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ABSTRACT

In this dissertation, I examine the properties and origins of the most energetic

component of Mercury’s atmosphere and how it couples to the planet’s magneto-

sphere and space environment. Mercury’s atmosphere consists of particles liberated

from its surface that follow ballistic, collisionless trajectories under the influence of

gravity and solar radiation pressure. This tenuous atmosphere can be classified as

an exosphere where the exobase boundary is the planet’s surface. To explain how

this exosphere is sustained, a number of theories have been presented: (1) thermal

evaporation from the hot surface; (2) photo-desorption of surface materials by UV

solar radiation; (3) sputtering by plasma surface interactions; and (4) vaporization of

the surface by micro-meteorite impacts. Utilizing a 3-dimensional numerical model, I

determine the role each source has in populating the exosphere. New observations of

Mercury’s escaping atmosphere are presented using novel imaging techniques in which

sodium acts as a tracer to identify atmospheric sources. I discuss the implications of

these measurements for our understanding of the physical processes at work in the

exosphere, and provide a foundation for modeling such processes. For the first time,

this work quantifies the variability in the loss of Mercury’s sodium as a seasonal ef-

fect. My observations show that atmospheric escape can, at times, exceed 1024 Na

v



atoms s−1, nearly twice the highest rate previously reported. By forward modeling

Mercury’s atmospheric escape, I place new constraints on the source properties and

eliminate the prevailing theory that the escaping tail is sputtered from the surface by

solar wind ions. The MESSENGER spacecraft has recently discovered that sodium

is distributed unevenly over the planet’s surface and that the magnetosphere is offset

from the planet’s center. Using the first model to include these effects, I demonstrate

the magnetosphere’s influence upon exospheric sources by simulating asymmetries ob-

served in the escaping atmosphere. I conclude that the exosphere is sustained by

a combination of micro-meteorite impact vaporization and photo-desorption that is

locally enhanced by precipitating ions.
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Chapter 1

Introduction

This work addresses the escape of sodium from Mercury’s atmosphere. The

atmosphere consists of atoms liberated from the surface by various processes, following

ballistic trajectories guided by gravity and solar radiation pressure, i.e., an exosphere

with a surface boundary. The highest energy component of sodium in Mercury’s

exosphere forms a comet-like tail escaping the planet due to acceleration by radiation

pressure (Potter et al., 2002). Sodium D-line measurements of Mercury’s atmospheric

escape provide constraints that aid in characterizing the sources and physical processes

sustaining the exosphere.

Data from a series of observing campaigns using the wide-field coronagraphic

technique described in Baumgardner & Mendillo (2009) and the image-slicing spec-

trograph approach described in Baumgardner et al. (2000) are presented here. The

wide field of view of both instruments can image sodium emission at great distances

from the planet’s surface, making them ideally suited for studying atmospheric es-

cape. This new set of remote sodium observations builds upon the latest domain for

exospheric science at Mercury, as recently described in Baumgardner et al. (2008) and

Potter & Killen (2008). Using these instruments, I will demonstrate that the ∼1000

RM tail can be a persistent feature, that the escape of Mercury’s Na exosphere is

heavily modulated by radiation pressure, and that it can exceed previously published

estimates. My goal is to document the orbital phase dependence of escape due to ra-

diation pressure, as well as possible changes in source rates over time periods ranging



2

from a few hours to several years. Over the length of the tail, the coronagraph images

can record a ∼10 hour time history of Mercury’s escaping Na atmosphere in which the

signal is bright enough to distinguish possible changes in escape rates. This dataset

thus enables the first study of short time-scale variations in the loss of Mercury’s

atmosphere.

To interpret the data physically, I simulate the escape of Mercury’s sodium exo-

sphere with a numerical model using Monte Carlo techniques. I have developed this

model to constrain, and in some cases eliminate, the many uncertainties regarding the

nature of the sources of Mercury’s atmosphere. In my Schmidt et al. (2012) study,

the escape rates of several sources are calculated at different orbital phases for direct

comparison to the wide-field measurements in the studies of Baumgardner et al. (2008)

and my Schmidt et al. (2010) work. Source fluxes required to generate the observed

brightness are derived from the model and compared with other published estimates,

forming constraints on the variability of the high-energy sources that supply the tail.

I also simulate short-term variations in high-energy sources with the goal of determin-

ing the variability in ejection rates at the surface capable of detection in wide-field

images. Finally, this model is further used to investigate anisotropies and asymmetries

that have been observed in the escaping atmosphere, and their potential relation to

localized physical processes on the surface.

1.1 Motivation and Overview of this Disseration

The research in this dissertation was carried out with the purpose of investigating

and answering the following important questions about the Mercury system: “What

is/are the source/sources of Mercury’s atmosphere? How much of Mercury’s atmo-

sphere is escaping? How does this escape vary with time? Do sources keep up with

losses? Is the exosphere coupled to the magnetosphere?” The process of answering
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these questions is involved and will be described in Chapters 2 - 5. The answers them-

selves, however, are succinct and conclusive, with each resolved specifically in Section

6.1.

1.2 Previous Work

1.2.1 The Sodium Exosphere: Observations

Observations of Mercury’s exosphere are complicated by the planet’s proximity

to the Sun. To date, the bulk of ground-based data were taken using solar telescopes

during Earth’s daylight. Summaries of several extensive data sets for sodium D-line

emission at Mercury can be found in Sprague et al. (1997), Potter et al. (2007) and

Leblanc & Johnson (2010). These reports reveal a high degree of temporal variability

in emission seasonally, diurnally, and regionally.

Several comets (Combi et al., 1997; Cremonese et al., 1997; Wilson et al., 1998),

the Moon (Mendillo et al., 1991; Smith et al., 1999; Wilson et al., 1999; Mierkiewicz

et al., 2006) and the planet Mercury (Potter et al., 2002; Potter & Killen, 2008; Kameda

et al., 2008) have all been shown to have tails of neutral sodium atoms escaping their

surfaces. Mercury’s neutral Na tail was observed at a distance of ∼16 Mercury radii

(RM) by Potter et al. (2002) and subsequently imaged at distances greater than 1000

planetary radii (Baumgardner et al., 2008). It is well known that sodium tails can

extend for millions of kilometers from comets and the Moon (Cremonese et al., 1997;

Smith et al., 1999), yet this is a recent discovery for Mercury (Baumgardner et al.,

2008).

Observational estimates of the Na gas temperatures at Mercury span a wide

range. High resolution spectrograph measurements at the McDonald Observatory

have shown the Na emission lines to be well approximated by thermal distributions.

However, using the same instrumentation, temperatures of 500K (Potter & Morgan,
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1987) and 1500K (Killen et al., 1999) were independently reported. Killen et al.

(1999) estimated gas temperatures by fitting the D2 line profile; temperatures were

found to vary spatially and were everywhere 600-700 K hotter than the surface. More

recently, the polar scans within 1500 km of Mercury’s limb by MESSENGER are well

fit by a Chamberlain exosphere at hotter temperatures of ∼1340K-1600K (Cassidy,

personal communication 2013). These high temperatures characterize the energies

that may originate from a combination of various source mechanisms, each of which

do not intrinsically have a Maxwellian velocity distribution. Some observational evi-

dence suggests multiple energy components with a very hot (∼6500 K) suprathermal

population, which is attributed to ion sputtering (Potter & Morgan, 1997; Wurz &

Lammer, 2003; Mura et al., 2009).

Initial observations found escape rates into the tail to be 1-10% of the estimated

ejection rate at the surface (Potter et al., 2002). Recent ultrawide 7◦ field images of the

planet contain a snapshot of sodium escape over as much as 15 hours (Baumgardner

et al., 2008), roughly two e-folding photo-ionization lifetimes (Huebner et al., 1992).

Naturally, such data suggest an investigation of potential short-term variability of

high-energy sources at the surface. Sputtering of high-energy atoms by impacting

solar wind and precipitating magnetospheric ions are expected to vary on timescales

of hours. Several ground-based data sets have shown significant short-term variations

in the exospheric sodium distribution, both spatially and temporally (e.g., Potter

et al., 1999; Leblanc et al., 2009; Mouawad et al., 2011).

In the absence of a collisional atmosphere or ionosphere, plasma in Mercury’s

magnetic field has direct access to the planet’s surface. Precipitating ions and electrons

help to liberate gases from the regolith and sustain a thin exosphere. In this way, the

exosphere is directly coupled to the magnetosphere. The extent of the magnetosphere’s

influence over the exosphere remains poorly constrained, however, as does the nature
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of the surface interactions releasing both volatile and refractory species from Mercury’s

regolith.

Observations of neutral sodium gas concentrated mid and high-latitude regions

of the dayside showered by plasma suggest magnetosphere-exosphere coupling (e.g.,

Potter & Morgan, 1990; Baumgardner et al., 2008). Such features are frequently

brighter in the south (e.g., Potter et al., 2006; Mangano et al., 2009). North-south

asymmetries in the exosphere were initially attributed to the radial component of the

interplanetary magnetic field (Sarantos et al., 2001). MESSENGER reveals, however,

that precipitation in the southern cusp may be on average four times higher than in

the north as a consequence of the planet’s offset magnetosphere (Winslow et al., 2012).

Sodium tail measurements by Baumgardner et al. (2008), Potter & Killen (2008)

and during the MESSENGER flybys (Vervack et al., 2010; McClintock et al., 2008)

show both localized density structures and seasonal variations associated with chang-

ing radiation pressure during Mercury’s orbit. With the exception of Vervack et al.

(2010), brightest emission in the northern lobe is consistent throughout these observa-

tions, rather than in the south, where sources enhanced by greater plasma precipitation

are expected. Such north-south asymmetries in the tail must arise from exospheric

sources distributed unevenly between these hemispheres. When investigating asym-

metric sources, variations in the Na surface concentration must also be included in

addition to plasma precipitation and space weather drivers (Evans et al., 2013).

1.2.2 The Sodium Exosphere: Sources and Surface Interactions

With the exception of neutralized solar wind particles, Mercury’s exosphere is

generated by processes that liberate atoms from the surface mineralogy. Sources of

sodium are considered to include photon-stimulated desorption (PSD), sputtering by

ions (IS), meteor impact vaporization (MIV), and thermal desorption (TD) (Killen

et al., 2007). The relative contributions of these mechanisms to the exosphere have
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been actively disputed for many years, and recent modeling suggests that no sin-

gle source mechanism dominates during the entire Mercury year (Leblanc & Johnson,

2010). Much of the Na exosphere bound by gravity can be efficiently generated by des-

orption (Yakshinskiy & Madey, 2000; Yoshioka et al., 2008). However, the brightness

of the recently observed escaping component suggests the contribution from higher en-

ergy sources, such as ion sputtering and impact vaporization, is much more substantial

than previously thought (Baumgardner et al., 2008). Fig. 1.1 gives an overview of the

relevant processes at Mercury.

Figure 1.1 Diagram of the major source and loss processes that generate and sustain
Mercury’s exosphere. At left, panels depict the three primary sources of exospheric
gas. Source: NASA
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Observations have demonstrated that multiple source mechanisms exist in the

lunar Na exosphere. On average the distribution of emission as a function of solar

zenith angle is indicative of thermal desorption of photon-stimulated desorption as the

predominate source (Mendillo & Baumgardner, 1995). Yet, observations in passing

through the plasmasheet of Earth’s magnetotail (Wilson et al., 2006), and during the

intense 1998 Leonid meteor showers (Smith et al., 1999), show measurable deviations

in column density, confirming the influence of IS and MIV drivers. Earth’s Moon is the

best known analog to Mercury, and, while nature does not permit these experiments,

there is expectation that several sources may shape Mercury’s exosphere as well.

Two additional sources of exospheric Na have been put forward. Sodium hydrox-

ide may be produced in meteoroid collisions with the surface and has a photolysis

lifetime shorter than the ballistic flight time (Self & Plane, 2002; Berezhnoy & Klu-

mov, 2008). The Na produced has energies of the order of the 1-2 eV bond strength

and will predominantly escape. Since this source would be distributed isotropically, it

remains difficult to explain asymmetries in the escaping tail (Potter & Killen, 2008).

Potter (1995) proposed a chemical reaction with hydrogen atoms derived from pro-

tons implanted into Na compounds in silicate rock, a mechanism termed chemical

sputtering. An example reaction proceeds as:

2H +Na2SiO3 → 2Na+ SiO2 +H2O (1.1)

Products on the right may desorb into the exosphere thermally. Although reaction 1.1

proceeds spontaneously, the activation energy and hence the reaction rate is unknown.

As with Na, photo-destruction lifetimes for water are long compared with the ballistic

flight times (Huebner et al., 1992). Much of the exospheric water molecules produced

would therefore be returned to the surface, and some may collect in permanently

shadowed regions. However, experiments onboard the MErcury Surface, Space EN-
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vironment, GEochemistry, and Ranging (MESSENGER) spacecraft have determined

that water ice in polar craters is likely to be of cometary origin (Neumann et al., 2013),

and the abundance of oxygen group ions is typically at least a factor of five less then

Na+ (Raines et al., 2013, in press).

In this work I will therefore limit consideration to four processes that liberate

sodium atoms from the surface: meteoroid impacts (e.g., Cremonese et al., 2005), ther-

mal desorption (McGrath et al., 1986; Hunten & Sprague, 2002; Leblanc & Johnson,

2003), photon-stimulated desorption (e.g., Potter & Morgan, 1985) and solar wind or

exospheric pick-up ions channeled by magnetic field lines to the surface (e.g., Potter

& Morgan, 1990; Ip, 1986; Delcourt et al., 2002; Lammer et al., 2003). Each of these

four mechanisms has a relatively large uncertainty in its source rate. Yields of both

desorption types vary with temperature, although in different ways (Yakshinskiy &

Madey, 2004). Additionally, if the surfaces of grains become depleted of Na, the rates

of desorption into the exosphere will be limited by diffusion (Killen et al., 2004). The

diffusion rates vary exponentially with temperature according to the Arrhenius equa-

tion, k = Ae−Ea/(kBT ), where kB is the Boltzmann constant and T is temperature.

However, Arrhenius coefficients A and Ea heavily depend on how vitrified the surface

is, and the corresponding diffusion rates (k) remain uncertain within a few orders of

magnitude. Additionally, ions impacting the surface can break the lattice structure

of the grain and enhance diffusion, thereby influencing other sources like desorption.

Furthermore, the conductivity of the regolith is still not well constrained. Surface

charging is hence poorly understood, but may have a large influence over surface in-

teractions. Thus, many ambiguities perpetuate a lack of understanding of the surface

physics governing the sources of the exosphere.

Sources of exospheric Na resulting from plasma precipitation differ in both their

energies and the spatial distributions across the surface. In addition to cusp ion
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impacts, precipitation to Mercury’s nightside during the long night (88 Earth days)

may chemically alter the surface, allowing subsequent desorption upon heating and

exposure to sunlight (e.g., Sprague, 1992). Physical sputtering of Na atoms occurs

predominantly by cusp ions, and generally results in gravitational escape. In contrast,

secondary processes induced by ion impacts can release atoms into the exosphere

at much lower energies. For instance, diffusion of Na to the topmost surface may

be increased in regions of ion bombardment, thereby enhancing desorption (McGrath

et al., 1986). Burger et al. (2010) required that diffusion enhancements increase photon

stimulated desorption (PSD) by a factor of >5 in order to fit the MESSENGER flyby

data. The effect of ion precipitation on PSD yields inferred from modeling of lunar

sodium is smaller (x2) and energy-dependent (Sarantos et al., 2010). Wilson et al.

(2006) observed that enhancements in the lunar Na exosphere were sustained for at

least 15 hours after the Moon’s passage through Earth’s plasma sheet. The time lag in

their measurements suggests that plasma interactions with the surface affect sources

of exospheric Na indirectly, as the exosphere’s response to the increased ion sputtering

should fade on much shorter timescales.

While it is clear that the bulk of the exospheric sodium returns to the surface, the

interactions between atoms and the surface also remains a subject of active research.

Hunten et al. (1988) emphasized two distinct populations: those chemically bound

to the regolith and those adsorbed from the exosphere. Madey et al. (1998) argued

that re-impacting sodium will bond ionically to surface oxygen, and thus take on

characteristics indistinguishable from sodium native to the regolith. Exospheric Na

may also bounce off Mercury’s surface. Laboratory measurements of Na interactions

with lunar samples have shown that the probability that an atom will stick or bounce

depends on the surface temperature (Yakshinskiy & Madey, 2005). Atoms that bounce

may experience some level of accommodation with the local surface temperature and
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the collision is probably not elastic (Hunten et al., 1988). Both the exit direction and

energy relative to the incidence angle are changed in a surface bounce. Sticking and

thermal accommodation are often parameterized as first order coefficients in models of

surface bound exospheres (e.g., Smyth & Marconi, 1995; Burger et al., 2010; Mouawad

et al., 2011; Killen et al., 2012).

Since collisions between exospheric atoms are rare, an atom’s velocity retains

the characteristics of the associated source mechanism, unless modified by surface

interactions. Although explanations of the observed spatial and temporal variations

generally rely on other source mechanisms (e.g., Leblanc et al., 2007; Mura et al.,

2009), photon-stimulated desorption is often hypothesized to be the dominant source

of Mercury’s Na and K exosphere (Killen et al., 2001, 2004). Even if PSD is the true

source for the bulk of the exosphere, very few desorbed atoms have energy sufficient to

overcome gravity, and ion sputtered or micro-meteorite vaporized Na may still dom-

inate escape. Determinations of the relative importance of these sources of energetic

sodium are now possible by observations of tail behavior with orbital phase, such as

those presented here, and observations during times of increased ion precipitation.

1.2.3 The Sodium Exosphere: Modeling

Estimates of Mercury’s total sodium production rate range from 1.35 to 10 ×

1024 atoms/s (see Potter et al., 2002, for a review). Mura et al. (2009) suggest that (1-

10%) of the atoms ejected by photon-stimulated desorption and 50% of ion sputtered

atoms have enough energy to escape. The Na escape rate at Mercury is more than an

order of magnitude larger than estimates of sodium loss at the Earth’s Moon (Wilson

et al., 2003). Even larger sodium escape rates are not uncommon in our solar sys-

tem. For comets, ∼1025 Na atoms/s were estimated to escape from comets Hale-Bopp

(Cremonese et al., 1997), Halley and Kohoutek (Combi et al., 1997). Production at
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Io varies substantially with volcanic activity, and at times may exceed the production

rate at Mercury by more than two orders of magnitude (Wilson et al., 2002).

Soon after the discovery of atomic sodium in Mercury’s exosphere by Potter &

Morgan (1985), numerical models predicted that radiation pressure could force this

gas into an anti-sunward tail (Ip, 1986; Smyth, 1986). A more in-depth analysis by

Smyth & Marconi (1995) demonstrated dramatic changes in radiation pressure, and

hence escape as a function of orbital longitude. These authors showed that atoms

with a surface ejection velocity of at least 2 km s−1 can acquire the additional velocity

needed to reach the 4.25 km/s escape speed. Additionally, modeled trajectories of

escaping atoms were calculated to transit to the opposite hemisphere before traveling

down-tail, an effect which has only recently become relevant, as I will discuss in detail

in Section 5.3.1

More recent Monte Carlo models have focused on the relative contribution of the

different source types in sustaining the Na exosphere. Yet, consensus between these

studies remains elusive. Leblanc & Johnson (2003) modeled the Na surface density

as having large differences on the day and night sides, at low and high latitudes,

and in morning and afternoon regions due to the rapid depletion of sodium in the

grain surfaces by thermal desorption. This work also determined that the rates of

influx of meteoritic Na and of Na lost via photo-ionization are in equilibrium. An

updated version of this model reported that the dominant source of the exosphere

can shift between thermal desorption, photon stimulated desorption, and solar wind

ion sputtering over one Hermean year (Leblanc & Johnson, 2010). Wurz et al. (2010)

reported that meteor impact vaporization and sputtering were two orders of magnitude

lower than the primary source, photon stimulated desorption. However, calculations

by Borin et al. (2010) indicate the impact vaporization source is probably substantially
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larger, and that the incident flux of micro-meteors is very much model dependent,

spanning a few orders of magnitude depending on the assumed parameters.

Given the potential for coupling between the magnetosphere and the exosphere,

some models have coupled exosphere simulations to codes that describe the precipi-

tation of ions to the surface. Mura et al. (2009) synthesized the proton precipitation

model of Delcourt et al. (2003) and attributed local enhancements in the cusp re-

gion to chemical sputtering rather than physical sputtering. Like Leblanc & Johnson

(2003), this model also suggested strong heterogeneity in the Na surface distribution,

particularly an enhancement of several orders of magnitude at dawn due to nighttime

accumulation and in cusp regions due to chemical sputtering. Burger et al. (2010) built

a model for the MESSENGER fly-by data which is qualitatively similar to the one

which I will describe in Chapter 4, as both owe their heritage to codes first developed

by Wilson & Schneider (1994). A separate model of proton precipitation during the

flybys was generated by (Benna et al., 2010) and synthesis of the two demonstrated

that models with PSD enhanced by factors of 4-9 in regions of ion bombardment

best match the flyby data. In contrast to chemical sputtering posed by Mura et al.

(2009), Burger et al. (2010) attributed local enhancements at the cusps to an increase

in diffusion in regions of ion implantation.

The MESSENGER magnetometer has shown the magnetic dipole moment is off-

set from the planet’s center by .2 RM to the north while approximately aligned with

the spin axis (Anderson et al., 2011). Such a configuration produces an asymmetry in

the magnetosphere cusp whereby more plasma has direct access to the planet’s south-

ern hemisphere than the northern one (Winslow et al., 2012). At the time of writing,

no exosphere or magnetosphere models for ion precipitation use a magnetosphere with

an offset center, though several are in development.
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In summary, many questions survive concerning sodium in Mercury’s atmosphere,

even after nearly 25 years of research. In particular, the relative contributions of differ-

ent source mechanisms, the nature of spatial and temporal variabilities, and the atmo-

spheric loss rates all remain unknown. My contributions stem from new measurements

of the escaping component, which I discuss in Chapter 2. Repeated observations at the

same orbital phase signify an atmosphere that is predominantly seasonal. In Chapter

3, I use a simple 1-dimensional model to demonstrate that the overall atmospheric loss

is greater than previously published estimates. Chapter 4 describes a more detailed

3-dimensional model, which is invoked in the following chapter to eliminate several

proposed exospheric processes and find evidence for coupling between the exosphere

and magnetosphere.
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Chapter 2

Sodium Tail Observations

2.1 Introduction

This section describes two instruments that I have utilized to study sodium in

Mercury’s exosphere: a wide-field coronagraph and an image-slicing spectrograph,

both located at the McDonald Observatory in Fort Davis, Texas. The calibration

routine for each instrument is described, and calibrated images are given in units of

Rayleighs. Data from each instrument represents a new achievement in ground-based

imaging of the planet’s escaping sodium atmosphere. The wide-field coronagraph data

displays a sodium tail at distances of ∼1500 planetary radii, the farthest reported mea-

surement of the planet’s exosphere. The image-slicing spectrograph data comprises

the highest resolution images of Mercury’s sodium tail taken from Earth.

2.2 Observational Methods for Ground-Based Measurements

Ground-based observations of Mercury are inherently difficult due to the planet’s

proximity to the Sun. The Mercury-Sun angle as seen from Earth never exceeds 28◦,

with elongations allowing imaging at twilight every few months. The Earth’s atmo-

sphere also emits strongly at the sodium D1 and D2 wavelengths, as micro-meteors

deposit metals in the mesosphere. In spectroscopic observations, these terrestrial emis-

sions conveniently provide a rest frame of reference from which Doppler shifted Na

on Mercury can be easily distinguished. Conversely, narrow-band imaging of sodium
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requires minimizing these terrestrial emissions, which can exceed Hermean signals in

the tail by orders of magnitude. Such observations are possible only during short

windows (<1 hour) occurring nightly over the several days surrounding maximum

elongation. Even the most favorable conditions require observation at low elevation

angles, through high air-mass, against a non-dark sky. Astronomers generally avoid

these domains with good reason!

2.3 Instrumentation

2.3.1 Wide-field Coronagraph

Figure 2.1 The optical layout of the coronagraph instrument used in wide-field direct
imaging of Mercury’s atmosphere.

The design of the coronagraph is elegantly simple, and it is certainly one of

few telescopes capable of advancing a modern scientific field with a modest four inch

aperture. The optics are refracting throughout and no mirrors are used. It consists

of a unity power section (1x magnification) with an occulting mask attached to a



16

field lens at the focus of an f/3.4 objective. Placing the occulting mask early in the

path minimizes scattered light that can reach the detector. The collimated beam then

passes through a narrow-band interference filter and into a commercial camera lens

with a fast beam of f/0.95 that images the sky onto a CCD detector. Fig. 2.1 shows

the optical design of the instrument as recently described by Baumgardner & Mendillo

(2009).

The short focal length (90 mm) commercial camera lens performs all magnifi-

cation and images the beam onto a 1024 × 1024 CCD with 13 µm pixels allowing

for a wide field of view, nearly 7◦ in diameter. The detector has a Peltier cooled

housing, permitting dark currents of ∼0.05 electrons/s at -25◦C, and a read noise of

∼9 electrons (RMS). With Mercury centered behind an occulting mask, exposures

up to 5 min can be taken without saturating the CCD using a narrow-band (∼14 Å

FWHM) filter that passes sodium D1 and D2 emission lines. Observations in 2007

and 2008 utilized a 6 arcmin wide occulting mask with 2 × 2 pixel binning to increase

sensitivity. Observations after May 2008 used 1 × 1 binning, trading sensitivity for

resolution, and all observations 2009 onward use a 10−4 neutral density filter as an

occulting mask. This neutral density filter passes a small amount of the solar contin-

uum reflected from Mercury’s surface, enabling Mercury’s position to be determined

directly in the image. Prior observations in 2007 and 2008 required triangulation from

in-field stars to pinpoint the planet’s location beneath the occulting mask. Figure 2.2

shows an example of a raw image from the coronagraph taken on UT 30 April 2009.

2.3.2 Image Slicing Spectrograph

In contrast to the coronagraph, the image slicing spectrograph is a relatively

complex design. Although integral field spectrographs are becoming common in as-

trophysics, the Boston University image-slicing spectrograph at McDonald Observa-

tory is currently the highest density fiber-fed spectrograph used in planetary science.
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Figure 2.2 Example of a raw image from the wide-field coronagraph over a 350 second
exposure taken UT April 30th 2009 02:45. Trees near the horizon in the lower portion
of the image appear smeared, as they move through the field during the exposure.
The neutral density filter protrudes horizontally, and obscures Mercury’s bright disc
at center. The long Na tail extends from Mercury, at the center of the frame, in the
one o’clock direction. The Pleiades, just to the right of Mercury, contain standard
stars used to calibrate the absolute flux and atmospheric extinction.
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Figure 2.3 Images showing allocation of the fiber waveguides from two dimensions at
the image plane (top) to a single line entering the spectrograph (bottom). The three
dead fibers in the field are interpolated over, while fibers with diminished throughput
are normalized to the same sensitivity in the flat fielding procedure.

This instrument has a 145µm spaced square lenslet matrix at the image plane of a 16

inch Schmidt-Cassegrain telescope. The lenslets have a focal length of 2 mm and are

packed contiguously so that minimal light is lost between them. Each focuses incident

light into a fiber-optic waveguide of 125µm diameter with a 100µm core. The bundle

of 400 individual fibers is sent from the 20 × 20 matrix at the focus of the lenslet

array to a single row at the spectrograph entrance. Mapping of this transfer from

2 dimensions to a single row is illustrated in Fig. 2.3. Upon passing through a slit

entrance, the grating of the high resolution (R ∼60000) spectrograph (Fig. 2.4) is

pivoted so that wavelengths centered just between the D-line doublet will have first

order diffractions that reach the detector at the center of the dispersion axis. A ∼40 Å

FWHM filter is placed in the telescopes optical path so that higher order diffractions
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at other wavelengths do not contaminate the spectra. In the current arrangement,

each fiber/spectrum corresponds to a square region of sky with 7 arcseconds on a side.

Not all the spectra physically fit on the 2.6 cm detector, however. Between 246 and

250 spectra are imaged simultaneously, so that the detector field of view is slightly

cropped relative to the telescope image plane.

Figure 2.4 The optical layout of the high-resolution spectrograph.

“Unslicing” an Image

Like the coronagraph, the image-slicer records a range of wavelengths of light.

However, rather than a fixed range of wavelengths over the filter pass-band, wavelength

range can be specified directly over a chosen range of pixels in the dispersion direction

since a spectrum at every spatial position is taken. Fig. 2.5 gives an example of a

portion of the image slicer data for Mercury. Note that four distinctly different sodium

D-line features exist in every spectrum: 1.) hermean exosphere emission, 2.) reflection
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of sunlight off Mercury’s surface which features a Fraunhofer absorption line due to

Na in the Sun’s atmosphere, 3.) terrestrial mesosphere Na emission and 4.) terrestrial

atmospheric scattering of the solar Fraunhofer absorption. Feature 1 Doppler shifts

are characterized by the line of sight velocity of the gas, while feature 2 is the sum of

the Sun-Mercury and Mercury-Earth shifts, and features 3 and 4 are in the rest frame.

Notice that the spectral features are curved with respect to their horizontal po-

sition across the detector. Spectral lines passing through a straight slit are curved at

the focal plane according to the grating equation (Schroeder, 1987). To correct for

this, the curvature of Ne, He, Kr, and Na spectral lamps emission lines are measured,

providing wavelength references commonly referred to as “arcs.” The curvature of the

line centers in the arc frames are fit to a 2nd order polynomial. Resulting coefficients

are applied in a 1-dimensional shift in the dispersion direction using bilinear inter-

polation. This un-warps the curvature in all science frames so that each wavelength

corresponds to a uniform row of pixels across the CCD.

Using flat field continuum illumination, the location of all 246 spectra are au-

tomatically traced on the detector. Starting from the center of the dispersion axis,

local maxima representing individual spectral positions are identified from a slice over

the cross-dispersion axis. Assuming a Gaussian shape, these maxima are then fit and

traced along both directions in the dispersion axis. As twenty individual parameters

are passed to the tracing algorithm, for an in-depth discussion of this procedure the

reader is referred to Section 3.1 of Sandin et al. (2010). Figure 2.6 shows the bottom

left corner of a flat field continuum frame, after corrections for bias, dark and spec-

tral curvature. Overlayed is the resultant aperture trace, where white lines indicate

the aperture centers determined for each fiber at each wavelength bin. Note that the

procedure of tracing the fiber apertures on the detector also identifies the eleven gaps

between fibers and three broken fibers.
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Figure 2.5 An example portion of a raw image of Mercury taken with the image slicing
spectrograph at sodium D line wavelengths. The dispersion axis is vertical, and the
two spatial dimensions are multiplexed. All fibers are illuminated by the twilight sky.
Surface reflection of sunlight off Mercury’s disk appears as bright continuum spectra
at center. The hermean sodium doublet can be seen Doppler shifted just below the
terrestrial mesospheric signature.
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Figure 2.6 Calculated traces of the aperture centers for each spectrum from individual
fibers. A small corner at bottom left of the 2048 × 2048 detector is shown for a
continuum flat field frame. White lines indicate the the center of each fiber’s profile,
determined in the tracing algorithm. Gaps can be seen each 20 fibers, marking the
next row of fibers at the telescope image plane.

Traces shown in Fig. 2.6 are used as a template to identify the 246 individual

aperture locations in all-sky, standard star, flat field and Mercury frames. At each

wavelength bin, the cross-dispersion profiles are then integrated over a region spanning

3.3 pixels from the trace center. Partial pixels are counted via the fractional flux

contained within them. Originally spreading over several pixels in the cross-dispersion

axis, spectra after this extraction are only 1 pixel wide. Extracted spectra are held

in a “row stacked spectra” (RSS) format, that is, a stacked output of dimensions

the number of wavelength bins (2048) × the number of spectra (246). Much of the

subsequent data reduction is performed in the RSS domain, as this is the most intuitive

way of visualizing the image-slicing spectrograph data.
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The RSS format is easily converted to and from a 3-dimensional “data cube.”

Spatial dimensions are re-allocated as seen in Fig. 2.3. Slices from the data cube can

then be taken over a desired wavelength range. Each slice corresponds to a rectangular

region of sky, i.e. an “un-sliced” image with dimensions 12 x 20 spatial pixels or

“spaxels.”

2.4 Data Reduction

This section outlines the calibration procedure for both instruments in terms

of the absolute surface brightness of emission from the sodium D-line doublet. The

Rayleigh unit is adopted, being defined as 106 photons s−1 emitted from a 1 cm2 col-

umn of atmosphere, where the emission is implicitly assumed to be isotropic (Hunten

et al., 1956). Scattering of the D2 line is actually diminished by a few percent in

viewing geometries where the Earth, Mercury and the Sun are near quadrature, as

is ubiquitous here. Assuming the scattering phase function derived by Chamberlain

(1961), a typical phase angle of 80◦ gives a 1% brightness correction for the doublet.

Actual column abundances may therefore be ∼1% greater than the isotropic deter-

mination used throughout this work, but this effect is considered small enough to be

neglected.

2.4.1 Instrumental Corrections

Coronagraph Corrections

Standard bias, dark and flat corrections are made to each science and calibration

frame taken by the coronagraph’s CCD. To eliminate cosmic ray counts and reduce

statistical noise, the pixel by pixel median composite of a stack of at least five correc-

tion frames is used in each case. All dark corrections are normalized to the exposure

time of the image being corrected. Flat field corrections are normalized by dividing
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by the mode of the distribution of pixel counts. Due to instrument flexure, flat frames

are imaged as close as possible to the telescope’s pointing direction during the science

frames. Care is taken to ensure that the identical flat corrections are applied to science

and calibration frames.

The passband of interference filters shifts toward shorter wavelengths with in-

creasing angles of incidence. Although incidence angles are <4◦, this shift alters the

transmission throughput for the D-line doublet by as much as 10%. A correction for

this effect is discussed in the next section, 2.4.2.

Image-Slicing Spectrograph Corrections

The spectrograph housing unfortunately allows a small amount of ambient dome

light to bleed through and reach the CCD detector. Contamination is not significant in

science frames, even at twilight. However, flat field continuum frames taken with the

dome halogen lamps on must be corrected for this light leak. A separate series of dark

frames is therefore taken in conjunction with the flat fields under identical lighting

conditions with the telescope aperture covered. Again using a median composite, these

frames allow a separate “dark” correction which is specific to the flat field frames.

The location of the spectra on the detector is temperature sensitive, as the spec-

trograph itself is a large thermal mass with associated flexure. Given that the spacing

between fibers is quite stable, the correction for variation in the location of the spec-

tra can be automated in the reduction pipeline by taking a periodogram in the cross-

dispersion axis. In this way, calibration and data frames need not be taken at precisely

the same temperature. A shift in aperture positions along the cross-dispersion axis is

applied when extracting the science spectra, with the shift amount determined by the

difference in the indices of the periodogram maxima.

Science and calibration frames taken with the image-slicing spectrograph’s CCD

are scrubbed for cosmic rays using the L.A. Cosmic algorithm (van Dokkum, 2001).
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Standard bias and dark corrections are made for each science and calibration frame

(e.g., Howell, 2006). Dark current corrections are normalized to the exposure time

of each image being corrected, and the pixel by pixel median composite of a stack

of at least three correction frames is used to eliminate cosmic ray counts and reduce

statistical noise. Flat field corrections of this instrument are less intuitive, however.

Dividing a raw image by a raw continuum flat field would amplify noise in the wings of

each fiber’s spectral profile. For this reason, flat corrections are made post-extraction

in the data reduction pipeline. After smoothing with a median filter in the dispersion

axis, values are normalized by the mode of the count distribution in all fibers. The non-

uniform throughput for each fiber channel is then corrected by dividing the resultant

flat in the RSS domain. Figure 2.7 shows an example from 21 December 2011 at this

point in the reduction pipeline.

Figure 2.7 Data from the image-slicing spectrograph that has been extracted into the
row stacked spectra (RSS) format. Telluric rest wavelengths for D1 and D2 are used
as a reference when correcting for Doppler shifts in the hermean surface reflectance
and exosphere emissions. Mercury’s exospheric emission is summed over the indicated
range. Following sky, surface reflectance and scattered light subtraction, the off-band
samples are used to correct for residual systematic errors.
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Spectra must be corrected for the background emission of the twilight sky. A

sky correction is built from a composite of the spectra in each science image which

have the lowest counts at the sodium D lines and are far from the Mercury’s disc. A

median of this pool of fibers is taken over the cross-dispersion axis at each wavelength

bin. The resulting background sky spectrum is subtracted from every spectrum in

the science frames. This method benefits from the sky levels being measured directly,

rather than scaled from an additional calibration frame. This sky subtraction corrects

for terrestrial Na emission in Earth’s mesosphere, although the Doppler shift is at

times large enough that hermean and telluric D-line emissions are not degenerate, as

is the case in Figure 2.7.

Scattered sunlight reflected from Mercury’s surface is also subtracted. This is

implemented using the surface reflected spectra of Ganymede, admittedly a relic of

the instrument’s original purpose. The Ganymede spectrum is shifted to the Earth-

Mercury Doppler shift at the observing time and scaled by the ratio of integrated

flux in broad-band continuum wavelengths. This subtraction is only applied to fibers

within several arcseconds of Mercury’s disk. Given that the surface reflectance exceeds

exospheric emissions by several orders of magnitude, a relatively large uncertainty

persists in the brightness near the planet’s disk.

An additional source of error is scattered light within the image slicing spectro-

graph itself. A small fraction of sunlight reflected from the planet’s surface arrives

at the detector off-axis from the optical path, especially for fiber rows that contain

bright light from the disk of the planet. This contamination is corrected for in two

ways. First, using an aperture mask over a raw image, the flux contained in fiber

gaps >5 pixels from any spectrum is smoothed with a median filter. Gaps close to

Mercury’s disk are omitted from the sample as they lead to over subtraction. Values

in the cross-dispersion axis are fit with a least squares quadratic for one pixel on the
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dispersion axis at a time. The result is smoothed using a convolution with a Gaus-

sian kernel to reduce noise. An identical extraction is performed on this scattered

light result so that it can be subtracted in the RSS domain. The second method of

scattered light removal is then applied — simple off-band subtraction. As the Mer-

cury and sky components have already been removed, wavelength bins adjacent to

the D-lines should ideally have zero values. Constructing a data reduction pipeline

that repeatably achieves this is exceedingly difficult, however. Off-band regions are

carefully chosen immediately adjacent to the hermean D-line emission, in the direction

opposing the Doppler shifted terrestrial emission (cf. Fig. 2.7). The median value of

several pixels along the dispersion axis is subtracted from each spectra.

2.4.2 Filter Characterizations

Narrow-band interference filters used in the coronagraph instrument must be cal-

ibrated in two ways. First, the overall integrated passband must be determined. This

passband is needed for characterization of the instrumental response to continuum

emission from a known standard, in this case blue spectral type standard stars. Sec-

ond, the transmission to sodium D1 and D2 line emissions must be determined. The

transmission is needed to calculate the attenuation of sodium D line emission and

recover the flux entering the telescope aperture. This section describes the procedure

for each filter calibration.

The filter passband calibrations were performed in the NSF-sponsored Calibra-

tion Facility in the Imaging Science Laboratory at Boston University. First, a solar

spectrum was fed from a heliostat and imaged though a high resolution spectrograph

like that in Fig. 2.4. The location of Fraunhofer absorption lines along the dispersion

axis of the CCD was fitted with a second order polynomial. This provides an accu-

rate wavelength reference for each position across the detector. Second, a tungsten

lamp spectrum was taken, allowing time for the filament to achieve thermal stability.
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Figure 2.8 Properties of the interference filter used in initial studies of the distant
sodium tail in 2007. The wave structure in the profile created an unwelcome ringed
pattern in the images which was fit and divided out visually.

Third, this same tungsten spectrum was imaged, this time with the narrow-band filter

in the optical path. Fourth, to estimate the effects of off-axis light, the filter was tilted

relative to the optical path in degree steps, with additional spectra taken at each tilt

angle.

After routine corrections for the bias level and dark current of the CCD, divid-

ing the filtered tungsten spectra by the unfiltered tungsten spectra yields the filter’s

transfer function, that is, the transmission versus pixel position. The polynomial fit

from the first step then gives the transfer function in terms of wavelength. Figures 2.8

- 2.10 show the transfer functions for the three narrow-band filters used in this study.

The quality of each successive filter is an improvement from the previous one. The
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Figure 2.9 Properties of the interference filter used in 2008 measurements. This filter
was selected because of the smoothness of the transmission profile, however throughput
for D-line emission was diminished by ∼30% compared to the previous filter in Fig.
2.8

passband of the filter shifts blue-ward when the filter is tilted. The rightmost profile

shows perpendicular light. At degree increments, up to 5◦ tilt are seen in each profile

shifted successively blueward. The overall bandwidth of the filter is shown at the top

left in each figure, calculated from the area under the profiles.

In optically thin sodium emission, the D2 transition is twice as bright as D1,

scaling with the number of sub-levels in the excited state. The inset plots of Figures

2.8 - 2.10 show the weighted average of each filter’s transmission at D-line doublet

wavelengths versus the incidence angle of the tungsten filament rays. Since the coron-

agraph accepts light at angles up to 4◦, these inset plots reveal that the transmission

varies across the detector by up to 10%. Measured D-line transmission is interpolated
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Figure 2.10 Properties of the interference filter used from 2009 onward. This filter was
selected to optimize transmission while preserving a smooth transmission profile.

over these angles to calculate the transmission at each pixel using the coronagraph’s

plate scale. The resulting map of the D line transmission at the detector is then di-

vided out, in order to recover the flux of the sodium doublet emission entering the

telescope.

Initial attempts at calibrating the D-line transmission relied on imaging a low

pressure sodium lamp, both with the filter in and out of the optical path. Dividing

these two images to yield the D line transmission, however, did not produce the

desired result. A wood-grain structure in the resulting image was an artifact of phase

interference at far red wavelengths, where silicon is transparent enough that incident

photons can reflect off detector layer interfaces. This provided evidence that the

detector had recorded substantial at the far red end of the visible spectrum. The
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spectrum of a low pressure sodium lamp contains both Na emission at 8195 Å, and

trace emission features from the Penning mixture of neon and argon, that is, more

than the intended D-line emission alone. As such, this method cannot isolate the

instrumental throughput to D-line emission without additional filtering of the lamp,

and hence was abandoned in favor of the laboratory measurement.

The interference filter in the image-slicer’s optical path is used only to eliminate

other wavelengths, with higher orders diffracted by the grating, from hitting the de-

tector. Unlike the coronagraph, the filter on the image-slicing spectrograph does not

need calibration for spectro-photometery.

2.4.3 Standard Star Calibrations and Atmospheric Extinction

All data were recorded when Mercury was at an elevation less then 15◦ from

the horizon. Measured fluxes by both instruments are therefore heavily dependent on

the atmospheric conditions. For this reason, standard stars measurements are used

for calibration, as this method allows nightly estimates of the atmospheric extinc-

tion. Calibration is performed using standard stars that have a known and stable

spectro-photometric brightness (Burnashev, 1985). O and B type standard stars are

preferentially selected in order to minimize stellar features at the Na D-line doublet.

White dwarf stellar types would also make suitable standards, however their faint

apparent magnitudes are generally less favorable.

The altitude of the standard star is determined from its right ascension and dec-

lination, and the time at the middle of the exposure. Given these three parameters, a

rotation matrix converts between the equatorial and horizontal coordinate frames. The

conversion between these coordinate frames is described in numerous observational as-

tronomy texts and hence not discussed here. Extinction of the standard star’s flux is

then fit to the form:
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I(z) = I0e
−kM(z) (2.1)

were I0 represents the airless flux of the star in units of data number (DN) per second

and k is the atmospheric extinction coefficient per unit vertical atmosphere. Eq.

2.1 implicitly assumes the extinction is uniform in composition, as corrections for

non-hydrostatic extinction in layers requires a much more rigorous solution. At the

low elevation angles of interest, refraction becomes significant to the extent that the

airmass, M , no longer scales simply as the cosine of the true zenith angle, z. Rather,

the airmass is estimated in the calibration of both instruments using a formula reached

empirically by Young (1994) as:

M(z) =
1.002432(cos z)2 + 0.148386 cos z + 0.0096467

(cos z)3 + 0.149864(cos z)2 + 0.0102963 cos z + 0.000303948
(2.2)

A least squares fit is used to solve for I0 and k in equations 2.1 and 2.2 given a

set of I versus z data points as a standard star rises or sets near the horizon. Thus,

the sensitivity and extinction parameters are determined simultaneously each night by

measuring the decrease in flux as a function of elevation angle. As Earth’s atmospheric

conditions vary on timescales of minutes, the flux of spectrophotometric standard stars

in the (Burnashev, 1985) catalog is measured by both instruments as closely as possible

to the science data. For the coronagraph, a standard star is occasionally in the same

field of view as Mercury.

Photometry

In reducing the image-slicing spectrograph data, background sky spectra are

subtracted from the entire field so that photometry can be performed subsequently by

simply totaling the counts. After normalizing the exposure times, all standard star
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spectra in the RSS format are summed, producing an array of the star’s DN s−1 for

each wavelength bin integrated over both spatial dimensions.

Standard star fluxes recorded by the coronagraph are determined via circular

aperture photometry, utilizing the NASA Astrolib IDL routine “aper.pro” for sky

subtraction. A two-dimensional Gaussian is fit to the point spread function of each

standard. The peak of the fit is used as the centroid of a circular aperture around

each star, where three times the fitted FWHM is the aperture radius (Howell, 2006).

The background sky is sampled over an annulus 3.5 - 5 times the FWHM. Partial

pixels from the projection of a circle on the square grid are weighted by the ratio of

area enclosed. The photometry program automatically rejects measurements of stars

that either 1.) approach non-linear saturation above 216 counts or 2.) have a signal

to noise ratio of less than three, calculated by summing in quadrature the scatter in

sky values, the random photon noise and the uncertainty in sky brightness.

2.4.4 Calibration and Reduction Procedures

Coronagraph Procedure

Once bias, dark and flat corrections have been made, all science and calibration

frames were divided by the two dimensional transmission of the filter, as determined

in the laboratory and described in section 2.4.2. This accounts for D-line flux which

entered the telescope but did not pass through the filter in order to reach the detector.

Next, the standard’s spectrophotometric flux in photons s−1 cm−2 Å−1, as cataloged by

Burnashev (1985), were multiplied by the filters passband determined in section 2.4.2.

This gives the standard’s flux in photons s−1 cm−2 that are capable of being registered

by the instrument in the absence of attenuation by the Earth’s atmosphere. Since

the star’s radiation is isotropic, the flux received in a given pixel will be that pixel’s

projected area on the sky at some arbitrary distance Rθ2, divided by the surface area

of the great sphere at this distance, 4πR2. This yields the relation:
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F = I
θ2

4π
(2.3)

Solving for I and converting to units of Rayleighs gives the star’s surface brightness:

IRayleighs = 10−6F
4π

θ2
(2.4)

The sensitivity, S(z), of the instrument as a function of altitude was found by

dividing Eq. 2.1 by Eq. 2.4, that is, the recorded data number (DN) per second

divided by the star’s surface brightness. The units of sensitivity are DNs−1R−1, and

this yields the relation:

S(z) = S0e
−kM(z) (2.5)

Iterating this procedure over many nights gives independent estimates of the

instrument sensitivity in the absence of atmospheric attenuation, S0, which should

remain constant provided the detector and instrument transmission are stable. In all

calibrated data using the filter in Fig. 2.10, the S̄0 was determined to be 0.038± .005

DN s−1 R−1. Once this airless sensitivity is established, calibration becomes one step

recursive, as I0 can be solved directly as S̄0×IRayleighs, rather than with a least squares

fit. The only fit variable in the calibration thus becomes the atmospheric extinction

coefficient per unit vertical airmass, k.

The apparent zenith angle for a given pixel location in an image, zApp(x, y), can

be determined as:

zApp(x, y) = P
∆x

cosφ
+ zM = P

∆y

sinφ
+ zM (2.6)

where ∆x,∆y are pixel distances from Mercury’s detector location, zM is Mercury’s

zenith angle at the time of mid-exposure, P is the telescope plate scale in radians per
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pixel, and φ is the angle between the meridian and the x-axis of the detector chip.

Since the telescope is mounted equatorially, the x-axis is parallel with right ascension

so that φ is easily computed (actually, a 3◦ visually determined offset is accounted for).

After bias, dark, flat, and transmission corrections are applied, dividing an image by

the extinction corrected sensitivity, Eq. 2.5, at each pixel using Eq. 2.6, gives a

calibrated image in Rayleighs. At this step, a conversion between true and apparent

zenith angles is made (Meeus, 1998), as atmospheric refraction significantly curves

light rays near the horizon.

Exposures ranging from 30 seconds to 5 minutes were possible in the fading

twilight without saturating the detector. Since the sodium in Earth’s mesosphere (∼90

km in altitude) was also imaged, terrestrial emissions in columns on both sides of the

tail were fit and subtracted from each image in order to isolate the Hermean emission.

This background from resonant scattering in the Earth’s mesospheric sodium layer is

the principal factor that affects the signal to noise ratio. Fig. 2.11 shows the regions

sampled for the terrestrial Na emission as a function of altitude. The median value of

a pixel row of constant altitude is taken on each side of the tail and averaged. A third

order polynomial is fit to these values as a function of elevation angle and subtracted

from the image to remove the terrestrial component and isolate Hermean emission.

Notice that Fig. 2.11 is aligned in φ. A rotation matrix over φ was applied pivoting

about Mercury’s location. Terrestrial subtraction is performed in the unrotated frame,

so that no interpolation of pixel values is required.

After subtracting terrestrial emission from each image, visually selected best

frames are combined into a single image for each night of data. Telescope flexure

slightly varies between the guide camera and the coronagraph. To correct for this,

exposures are shifted to co-align Mercury’s pixel centroid to a reference image. Bilinear

interpolation is implemented allowing sub-pixel shifts. The best images of the tail are
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Figure 2.11 Sampled regions used for fitting and subtracting terrestrial Na emissions
in Earth’s mesosphere, shown in white. Hermean emission in the tail is centered
between the these white columns. This image has been rotated so that the horizon
is parallel with the horizontal axis. The neutral density filter occulting mask extends
from bottom left. The vertical gradient throughout the field is due to combined
emission from resonantly scattered Na in Earth’s mesosphere, and twilight scattered
solar continuum.
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then stacked into a three-dimensional array and a composite (median) image is created

from the median of the stack at each pixel. The result is then rotated to align the

tail in the y axis and cropped to the region of interest. The rotation angle is between

the x-axis (constant declination) and the Sun-Mercury vector, allowing the rotation to

be automated in the reduction pipeline via SPICE ephemerides (Acton, 1996). Final

images are displayed in Sec. 2.5.1. Note that the final two steps, shifting and rotating,

required bi-linear interpolation of pixel values. These are the only interpolations of

pixel values used throughout the reduction procedure.

Image Slicing Spectrograph Procedure

Calibration of the image slicer data is carried out much in the same way as the

coronagraph, but with the absolute flux determined per unit wavelength bin, rather

than over a filter passband. Wavelengths registered by a coronagraph pixel span the

entire filter passband, and a standard star’s spectrophotometric flux is thus multiplied

by ∼14 Å to give I in Eq. 2.3. Wavelengths registered by a pixel on the image

slicer detector span a small fraction of an Å. In this case, a standard star’s flux in

photons s−1 cm−2 Å−1 is multiplied by the spectrograph’s dispersion to give the flux

per wavelength bin of the instrument, i.e., the flux per pixel along the dispersion axis

of the detector. Using Eq. 2.3, where θ is the angular width of a spatial element, the

incident surface brightness of the star is calculated over the spectral range of a single

pixel along the instrument’s dispersion axis.

After corrections and extraction, the average recorded flux in the star’s continuum

region between the D lines is tallied in DN s−1 as a function of the true elevation

angle and fit to Eq. 2.1. Dividing an image by the sensitivity after the atmospheric

extinction correction, Eq. 2.5, interpolated at Mercury’s elevation angle mid-exposure,

gives a result in Rayleighs at each wavelength bin. Whereas the coronagraph requires

isolating hermean emission from the background, the emission in the spectrograph
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is summed over the line width along the dispersion axis. After correcting for the

planet’s Doppler shift using SPICE epherides, the sum over several pixel rows gives

the brightness in Rayleighs that is intrinsic to Mercury.

Simultaneous measurements with the image slicing spectrograph can be cross-

calibrated with the coronagraph, after normalizing for both exposure time and eleva-

tion angle. The total surface brightness of a standard star in Rayleighs, integrated over

the bandwidth of the coronagraph’s filter, can be cross-calibrated to that measured

by the coronagraph’s CCD. In principle, this technique would also work for Mercury

frames with the planet out from behind the occulting mask and short integration

times.

With the aid of flexure between the 16 inch and guide telescopes at low elevation

angles, images of the planet are intentionally dithered within the field of view. This

permits a higher resolution image to be made from the composite of several individual

frames, and aids in lowering the residual noise floor from flat fielding errors. The

centroid is determined by weighting the off-band brightness over five spatial elements

and is again used to shift and co-align the images from a given night. Each slice is

re-sized to 24 × 40 spatial elements, without interpolation, and placed in a stack. The

pixel by pixel median value of the stack is then used as a final composite image for

each night, the result having twice the resolution of the individual frames.

2.5 Data Acquired

Table 2.1 summarizes the conditions for the observing runs used in this study.

The true elevation angle of Mercury at sunrise / sunset is given in the last column

and is a proxy for the background emission levels that govern signal to noise. Obser-

vations frequently overlap the same orbital longitudes. The true anomaly angle, TAA,

is the angle between perihelion, the Sun, and Mercury. Heliocentric velocity, VR, and
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Table 2.1. Sodium D Line Observations of Mercury at McDonald Observatory
2007-2012

Campaign UT Date TAA VR PRad Range Elevation

(deg) (km s−1) (cm s−2) (AU) (deg)
(1) (2) (3) (4) (5) (6) (7)

1 31 May 2007 114 9.19 129.9 0.404 20.5
1 2 June 2007 121 8.62 116.8 0.415 20.6
1 3 June 2007 124 8.39 111.4 0.420 20.6
2 12 Nov. 2007 69 9.37 180.9 0.345 16.4

3M 15 Jan. 2008 287 -9.65 182.1 0.350 13.1
4 18 May 2008 118 8.88 122.7 0.410 18.8
5 6 July 2008 275 -10.03 171.4 0.365 15.6

6T 19 April 2009 46 7.27 159.0 0.325 16.5

6T 20 April 2009 52 7.92 171.0 0.329 17.2

6T 21 April 2009 57 8.47 177.6 0.334 17.8

6T 22 April 2009 63 8.94 180.5 0.339 18.4

6T 24 April 2009 73 9.61 179.3 0.350 19.2

6T 27 April 2009 87 10.04 168.2 0.367 18.7

6T 30 April 2009 100 9.92 152.3 0.384 18.5

6T 1 May 2009 104 9.77 146.11 0.390 18.3
7 12 Dec. 2009 256 -9.78 148.7 0.389 11.8
7 17 Dec. 2009 278 -9.96 175.5 0.360 13.8
8 4 April 2010 35 5.73 115.1 0.317 16.6
8 5 April 2010 41 6.55 140.9 0.321 17.1
8 6 April 2010 46 7.05 156.3 0.324 17.6
8 7 April 2010 52 7.92 171.0 0.329 18.0
8 8 April 2010 57 8.48 177.8 0.334 18.2
8 11 April 2010 73 9.61 179.3 0.350 17.4
8 12 April 2010 78 9.83 177.1 0.355 17.3
8 14 April 2010 87 10.04 168.2 0.367 16.7
9 3 Jan. 2011 90 10.06 165.7 0.370 17.1
9 5 Jan. 2011 98 9.96 155.2 0.381 17.3
9 8 Jan. 2011 110 9.47 136.4 0.399 17.1
9 9 Jan. 2011 114 9.21 130.2 0.404 16.9
9 10 Jan. 2011 117 8.94 124.0 0.409 16.7
9 12 Jan. 2011 128 8.31 111.0 0.419 16.2
9 13 Jan. 2011 131 7.96 103.6 0.424 15.9
9 14 Jan. 2011 134 7.59 95.2 0.429 15.6

10M,H 3 July 2011 110 9.55 139.4 0.396 15.7

10M,H 4 July 2011 114 9.31 132.6 0.402 16.1

10M,H 5 July 2011 117 9.06 126.6 0.407 16.4

10M,H 6 July 2011 121 8.76 120.1 0.412 16.7

10M,H 7 July 2011 124 8.45 113.7 0.417 16.9

10M,H 8 July 2011 128 8.11 106.7 0.422 17.1

10M,H 9 July 2011 131 7.75 99.3 0.426 17.3

10M,H 10 July 2011 134 7.37 90.9 0.431 17.4

10M,H 16 July 2011 152 4.83 39.6 0.452 17.1

11M 21 Dec. 2011 90 10.06 164.8 0.371 17.7

11M 22 Dec. 2011 94 10.03 159.3 0.377 17.6

11M 26 Dec. 2011 110 9.43 135.95 0.399 17.3

11M 28 Dec. 2011 118 8.90 122.9 0.410 16.5

11M 29 Dec. 2011 121 8.60 116.5 0.415 16.1

11M 30 Dec. 2011 125 8.27 109.9 0.420 15.7

12M,H 15 June 2012 93 10.05 162.0 0.374 15.9

12M 17 June 2012 101 9.88 150.3 0.386 17.0

12M,S 18 June 2012 105 9.72 144.8 0.391 17.4

12M,T,S 19 June 2012 109 9.52 138.3 0.397 17.9

12M,T,S 20 June 2012 113 9.29 132.4 0.402 18.2

12M,H,T 21 June 2012 116 9.03 125.6 0.408 18.5

12M,H,T 22 June 2012 120 8.73 119.8 0.412 18.8

12M,H 23 June 2012 123 8.41 112.7 0.418 19.0

12M,H 24 June 2012 127 8.07 105.6 0.423 19.2

13M 28 Nov. 2012 45 7.17 159.0 0.324 16.3

13M 29 Nov. 2012 51 7.83 169.9 0.328 16.7

13M 30 Nov. 2012 57 8.40 177.4 0.333 17.9

MSimultaneous with MESSENGER

TSimultaneous with THEMIS Observations

HSimultaneous with Haleakala Observations.

SSimultaneous with McMath-Pierce Observations.
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radiation pressure, PRad, are periodic functions of TAA, and the combined framework

provides a convenient metric for seasonal studies. Three observing campaigns were

coordinated in conjunction with groups at other observatories as part of the Interna-

tional Mercury Watch initiative. At the beginning of each run, the telescopes were

co-aligned so that data can be recorded simultaneously in both instruments.

2.5.1 Wide-field Coronagraph: Distant Tail

Figure 2.12 Coronagraph observations from the May to June 2007 elongation, cali-
brated in Rayleighs. The Sun is in the downward direction and the plus symbol at
bottom center represents Mercury’s position behind the occulting mask. The sur-
rounding region in white is the 1σ uncertainty level in Mercury’s position. (Left to
right) UT 31 May 2007, 2 June 2007, and 3 June 2007.

Since May 2007 13 observing campaigns, each taken with Mercury near maxi-

mum elongation, have been collected using Boston University’s 10 cm coronagraph

telescope at the McDonald Observatory. The first coronagraph image was presented
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by Baumgardner et al. (2008), and weather conditions in the days following permitted

accurate imaging on 2 June 2007 and 3 June 2007. This data set was the only elon-

gation out of the first 5 observing runs in which the tail was observed, and weather

conditions allowed photometric imaging for more than one night. The 12 Novem-

ber 2007 observation yielded the brightest tail recorded thus far in any study of the

Mercury exosphere. 15 January 2008 data was taken in conjunction with the first

MESSENGER fly-by. Ground-based observations were not possible during the second

fly-by on 6 October 2008, as Mercury was only 2◦ in angular separation from the Sun.

Observations on 18 May 2008 were taken during nearly the same orbital phase as

those of the previous summer, and the signal of sodium emission in the tail was strong

enough that higher resolution was achieved by 1 × 1 binning the CCD. Prior to this

date, 2 × 2 pixel bins were summed to give higher signal at the cost of lower resolution.

Observations on 7 July 2008 closely matched the orbital phase of those taken during

the first MESSENGER fly-by, but with much better observing conditions.

Calibrated images from the first seven observing dates are shown in Fig. 2.12,

Fig. 2.13 and Fig. 2.14. Five of these seven observation dates show a tail that

visibly extends several hundred Mercury radii. Fig. 2.12 reveals changes in the tail

over just a few days: 31 May 2007, 2 June 2007, and 3 June 2007. Fig. 2.13 shows

changes on a much longer timescale of observations over nearly 1 year: 3 June 2007, 12

November 2007, and 18 May 2008. Before the neutral density filter was implemented

in 2009, Mercury’s position under the occulting mask was found by interpolation

from the azimuth and altitude of neighboring stars. The region in white gives the 1σ

uncertainty ellipse in Mercury’s position. The down-tail distance scale, given at the

left side of these plots, accounts for the projection of the tail’s anti-sunward direction

in the plane of the sky. This scale was calculated using the SPICE (Spacecraft Planet

Instrument C-matrix Events) ephemerides as:
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Distance(RM)

Pixel
=

α

2P sin (π − ∠SME)
(2.7)

where P is again the coronagraph’s plate scale in radians per pixel, ∠SME is the

Sun-Mercury-Earth angle, and α is the planet’s angular diameter in radians. As this

geometry and the distance to the planet changed nightly, figures that compare the tail

are normalized for the same physical scaling via bilinear interpolation over both axes.

Figure 2.13 Observations spanning three elongations. (Left to right) UT 3 June 2007,
12 November 2007, and 18 May 2008.

Observing runs during 14-17 January 2008 and 3-6 July 2008 (Fig. 2.14) did not

yield a detection of a tail beyond the occulting mask. In observations made just 7

hours after the MESSENGER first fly-by closest approach, no tail was found above

the noise level at a distance of ∼120 RM , corresponding to the edge of the coronagraph

mask. This finding is consistent with observations of the MASCS UVVS instrument

onboard MESSENGER, which showed the tail disappearing from the detection limit
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near 10 RM (McClintock et al., 2008). Images from 15 January 2008 and 6 July 2008

represent non-detections and are shown in Fig. 2.14, in which background emissions

largely correspond to high noise levels in the subtraction of terrestrial sodium due to

low observing elevations.

Figure 2.14 Example images from non-detections at (left to right) UT 15 January 2008
and 6 July 2008.

The effects of shadowing by the planet’s disk observed by UVVS in the two

MESSENGER fly-bys (Vervack et al., 2009) are not seen in the coronagraph data set.

Asymmetries and enhanced emissions in the northern portion of the tail measured by

Potter & Killen (2008) at lesser distances are also not observed, a consequence of the

instrument’s plate scale being far too large (∼0.5 arcmin/pixel) to resolve the northern

tail lobe from the southern one.

Fig. 2.15 shows the tail brightness versus distance profiles obtained from the

data in Fig. 2.12 and Fig. 2.13. Each profile represents the emission in a single
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row of pixels anti-sunward from Mercury after the images are rotated. The region

out to a distance of 500 RM is chosen to best highlight major differences. Poisson

uncertainties in subtraction of terrestrial mesospheric sodium dominate the error in

brightness. These are added in quadrature to a 10% uncertainty from standard star

calibrations, producing the sample error bars shown every fifth data point.

Figure 2.15 Comparison of peak brightness versus distance for each observation shown
in Fig. 2.12 and Fig. 2.13.

Heliocentric velocity and radiation acceleration at Mercury are shown in Fig.

2.16 to demonstrate that the tail’s long term variability was correlated with orbital

motion. Colored regions indicate orbital data coverage over the the first five observing



45

runs. The black arrows represent the velocity feedback effect, by which radiation

acceleration changes during an atom’s transit down-tail, for a Doppler shift into or

out of the Fraunhofer absorption well. The next chapter quantifies this effect in detail,

and discusses the implications for atmospheric escape.

Figure 2.16 A diagram of radiation acceleration at Mercury’s surface versus the he-
liocentric velocity intrinsic to Mercury orbit. The acceleration imparted to sodium
atoms by solar photons will change by nearly a factor of 15 over Mercury’s orbit, as
shown by the vertical axis. As Mercury orbits, motion around this loop is clockwise.
Atoms traveling down the tail experience an additional change in acceleration due to
their Doppler shift with respect to the Sun; black arrows show the effect on atoms in
the tail when Mercury is traveling toward and away from the Sun.

2.5.2 Variation in escape rates

The results in Fig. 2.15 suggest that the escape flux changes substantially with

orbital position. In the lower panel that relates the long term results of Fig. 2.13,

emission roughly doubled out to 500 RM when the radiation acceleration increased

from ∼115 to ∼184 cm/s2. The recorded emission does not scale directly with the
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scattering rate (g-value) for these measurements, meaning amplified scattering alone

cannot account for this emission enhancement. A doubling of emission shown in Fig.

2.15 must therefore represent higher column abundance in the tail. A change in the

rate of escape in the surface-bound exospheric population is thus evident in these

observations. Higher radiation pressure on 12 November 2007 stripped away more

of the bound exosphere, so the increase in emission naturally results from Mercury’s

orbital phase, rather than transient variations in sources, e.g., ion sputtering or meteor

impacts.

Some externally induced variability cannot be ruled out, however. Ion precipi-

tation to Mercury’s surface is dependent on the interplanetary magnetic field config-

uration (e.g., Massetti et al., 2003; Kallio & Janhunen, 2003) and effects of coronal

mass ejections passing Mercury have been attributed to a factor of 3 increase in total

exospheric sodium content (Potter et al., 1999). Since this observing campaign began

in May 2007, the SOHO CELIAS instrument, positioned at Earth’s L1 Lagrange point

1.5 × 106 km sunward of Earth, has recorded a range of daily proton energy densities

changing by a factor of ∼40 and momentum densities which change by a factor of ∼30.

Unfortunately, extrapolations of this solar wind data from 1 AU back to Mercury are

strongly model dependent, and constraints on the time variation of micro-meteors do

not exist. However, SOHO MDI solar magnetograms and C3 coronagraph images show

quiet Sun conditions for the 2007 - 2008 dates considered here. Although I find no

evidence for the effects of solar activity in analyzing the first seven coronagraph obser-

vations, better constraints on solar wind and interplanetary magnetic field conditions

at Mercury are needed in order to dismiss the possibility.

Data analysis of observations after my (Schmidt et al., 2010) study suggests that

some day to day variability may be present, independent of that intrinsic to orbital

effects. Fig. 2.17 shows observations that straddle the orbital phase of maximum
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Figure 2.17 Observations of the sodium tail during campaign 6 in April of 2009. Ra-
diation pressure is at a maximum on 22 April 2009.
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Figure 2.18 A survey of the sodium tail during observing campaign 12, in June 2012.
Radiation pressure is decreasing from left to right. The signal to noise level improves
on consecutive nights, with Mercury’s elevation at dusk.

radiation pressure on 22 April 2009. Brightness of the tail appears to either surge

during the final two nights of the campaign or show a depletion on April 24th and

27th. Fig. 2.18 shows an output of the coronagraph’s data reduction pipeline for

the June 2012 observing campaign. As given in Table 2.1, the radiation pressure was

steadily decreasing over these dates. Yet, the brightness in the tail was not observed to

steadily decrease over consecutive nights. Significant escape occurs even for a radiation

acceleration of only 106 cm s−2 on 24 June 2012. Prior studies have predicted that the

tail should not be observable at this time (Potter & Killen, 2008). The preliminary

results in figures 2.17 and 2.18 suggest short-term changes in drivers in Mercury’s
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escape. However, further analysis of these data and a more careful review of the

calibration is needed to confirm or refute the presence of day to day variability.

2.5.3 Image Slicing Spectrograph: Near Planet Tail

Figure 2.19 The composite of several images taken on 26 Dec 2011 when Mercury
reaches its maximum velocity from the sun at a true anomaly angle of 90◦

Figure 2.19 shows an image of the tail at a true anomaly angle of 90◦ when

Mercury was at the maximum heliocentric velocity. This figure currently represents

the highest resolution ground-based image of Mercury’s escaping sodium exosphere.

Values within 1 RM of the disk are masked as surface reflection and seeing artifacts in

this region yield poor confidence. A slight enhancement in emission in the northern

lobe of the tail is seen relative to the south. Although contamination of scattered

light from Mercury’s disk has been removed from adjacent rows of pixels (cf. Sec.

2.4.1), further analysis of scattered light artifacts is warranted before the North-South

asymmetry can be quantified precisely. Still, an overall north-south ratio greater than
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unity can be claimed with confidence. A physical mechanism responsible for this

asymmetry is proposed in Sec. 5.3 and modeled in detail in Sec. 5.3.1

Figure 2.20 The composite of several dithered and individually calibrated images taken
the on night of 4 July 2011

Figures 2.20 and 2.21 show final nightly composite images taken two Mercury

years apart, but at the same orbital longitude. As each was taken during an opposite

elongation (morning / evening), the tail’s direction is flipped between images. In con-

trast to the coronagraph, noise levels in the image-slicer data are primarily governed

by scattered light from Mercury’s disk and by the Doppler separation from terrestrial

emissions. The relative velocity of -26.4 km s−1 in Fig. 2.20 produces noticeably more

noise than in Fig. 2.21, where a 35.5 km s−1 shift fully separates the terrestrial and

hermean lines. Considering seeing effects and subtraction of bright surface reflection,

comparisons in brightness very close to the planet’s disk are dubious (values within

1 RM of the disk are masked completely for this reason). However, the sodium tail

beyond ∼10 RM agrees very closely, both in brightness and width between these im-
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Figure 2.21 The composite of several images taken 26 Dec 2011 at the same orbital
phase as 2.20

ages. Like the coronagraph results in Fig. 2.13, which are separated by four Mercury

years, the characteristics of sodium escape are seen to persist over repeated measure-

ments taken at similar orbital longitudes. Although only the high energy component

of the exosphere is seen in these data, this finding indicates an atmosphere governed

by seasonal effects, rather than driven by variability from Mercury’s dynamic space

environment.
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Chapter 3

The Interpretation of the Data and

Simulating Na Exospheres

3.1 Introduction

This chapter describes the physical processes associated with sodium D-line emis-

sion at Mercury. The unique effects imparted by solar radiation pressure and Mer-

cury’s eccentric orbit are derived. A simple 1-dimensional model is presented of the

Na D-line emission as a function distance down the escaping tail. Fits of this model

to the first two years of coronagraph data yield the highest Na escape rates reported

at Mercury (Schmidt et al., 2010).

3.2 Sodium Spectroscopy

Extracting density information from the data sets in this study requires an un-

derstanding of the physical process that scattered the photons. Therefore, a review

and physical description of the sodium atom is outlined here with a focus on its energy

states and the D-line transitions.

Sodium has but 1 stable isotope, 23Na, comprised of 11 proton electron pairs, and

12 neutrons. The ground state term symbol is 2S1/2 and the electron configuration

is 1s22s22p63s. A term symbol uniquely identifies quantized levels according to the

format 2S+1LJ , where S is the total spin angular momentum quantum number, given

sum of the ±1/2 spins of the valence electrons, and J = L± S, for an orbital angular
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Figure 3.1 Grotrian diagram of transitions within a sodium atom. Transitions from
first excited states, 2P1/2 and 2P3/2, to the 2S1/2 ground state result in the D-line
emission doublet. Adapted from Mitchell & Zemansky (1934)
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momentum quantum number L. Although there are many electric quadrupole and

magnetic dipole transitions in sodium, electric dipole transitions are the most efficient

in naturally occurring Na gas and result in the D-line doublet at 5890 Å and 5896 Å.

The electric dipole transition selection rules for the change in quantum numbers are:

∆S = 0, ∆ms = 0,∆L = ±1 and ∆ml = 0,±1. Figure 3.1 shows an energy level

diagram indicating transitions within a sodium atom.

The anomalous Zeeman effect, that is, splitting of an energy state in the absence

of an external magnetic field, was first observed in sodium D-lines, earning Pieter

Zeeman the 1902 Nobel Prize in Physics. It is termed anomalous as this was well

before quantum theory determined that the electron had its own spin generating a

B field native to the atom. The magnetic field strength in Mercury’s exosphere is

∼10−7 of that intrinsic to the atom, so that further splitting need not be considered

here. The quantum number which determines Zeeman splitting is mj = ml + ms

which has allowed values of ±J . Considering this effect semi-classically, both the

electron spin and the current from its orbital motion induce a magnetic moment.

Because the electron spin (quantum number s) and the electron’s angular momentum

(quantum number l) are both quantized, the interaction of their induced magnetic

moments in the spin-orbit coupled state is also quantized, hence mj. Electric dipole

transitions require that ∆S = 0, so spin drops out of the transition selection rules and

mj = ml + ms = ml = 0,±1. Thus, sodium has four degenerate states at the 2P3/2

level and only two degenerate states at the 2P1/2 level (l = 1, s = 1/2, J = l−s = 1/2).

Fig 3.2 gives oscillator strengths for these transitions as well as the Zeeman line shifts

from the centroid (Morton, 2003). Note, that these quantities differ slightly from those

quoted in Brown & Yung (1976).
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2P1/2

mj = −1/2 mj = +1/2
f = .026 f = .133

2S1/2
mj = −1/2 ∆λz = −11.4mÅ ∆λz = −13.6mÅ

f = .080 f = .080
mj = +1/2 ∆λz = 9.1mÅ ∆λz = 6.9mÅ

2P3/2

mj = −3/2 mj = −1/2 mj = +1/2 mj = +3/2
f = .053 f = .133 f = .133 Forbidden

2S1/2
mj = −1/2 ∆λz = −12.1mÅ ∆λz = −12.3mÅ ∆λz = −12.7mÅ (∆mj = 2)

Forbidden f = .016 f = .080 f = .225
mj = +1/2 (∆mj = 2) ∆λz = 8.2mÅ ∆λz = 7.8mÅ ∆λz = 7.2mÅ

Figure 3.2 Oscillator strengths and line shifts (∆λz) for anomalous Zeeman splitting in
sodium. The vacuum line centroids are taken as 5891.5833Å for D2 and as 5897.5581Å
for D1. The total oscillator strength of allowed D2 transitions are twice those of D1.

3.3 Radiative Transfer: Resonant Scattering

The lifetime for spontaneous emission of Na in both the 2P3/2 and the 2P1/2 states

is ∼1.6 × 10−8 s (Sansonetti, 2008). When this nearly instantaneous de-excitation fol-

lows the absorption of a photon, the process is termed resonant scattering. Where

illuminated, collisional de-excitation of atomic Na in the 2P state is effectively neg-

ligible given the relative timescales. Even in Earth’s mesosphere, where sodium is

deposited in molecular form, collisional effects on the D-line features are minimal com-

pared with resonant scattering. Free sodium produced by collisions with oxygen yield

<100 R nightglow brightness, whereas resonant scattering at twilight is several kilo-

Rayleighs at zenith (Chamberlain, 1961). When compared with Earth’s mesosphere,

collisional effects and atmospheric chemistry in Mercury’s exosphere are negligible.

Excitation by UV photo-dissociation of Na in molecules may still be present, but the

emission is negligible given the remarkable efficiency at which sodium continuously

scatters visible solar photons and the high atomic to molecular Na abundance. Thus,
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all D-line emission in Mercury’s exosphere can be considered as resonant scattering of

solar photons to an excellent approximation.

In applications at Mercury, a derivation of the resonant scattering rate is straight-

forward. Consider a beam of light of intensity Iν(0), passing through a layer of sodium

gas of thickness s which absorbs, but has negligible emission. In the absence of a source

function, the solution of the transfer equation for pure absorption of the emergent

beam, Iν(s), is:

Iν = Iν(0)exp

(
−
∫ s

0

kν(s) ds

)
(3.1)

The absorption rate can be expressed in terms of the Einstein B coefficients by treating

stimulated emission as negative absorption. Using u and l to designate the upper and

lower energy states, the absorption coefficient per unit of volume, k is formulated as:

kν =
energy

solid angle
× atoms

volume
× absorptions

atoms
× absorption line profile

=
hν0
4π

(nlBlu − nuBul)φ(ν)

=
hν0nlBlu

4π

(
1− glnu

gunl

)
φ(ν)

≈ n
hν0Bluφ(ν)

4π
= n

πe2fluφ(ν)

mec

(3.2)

where n is the number density of sodium, g is the state degeneracy, hν0 is the energy

at line center, Blu is the Einstein coefficient for photo-absorption and φ(ν) is the line

profile. The last result is also expressed in terms of the transition’s unitless oscillator

strength, f , where e and me are the charge and mass of the electron, respectively, and

c is the speed of light. The final step in Eq. 3.2 is well approximated in the limit that

all the gas is in the ground state. This section will demonstrate that the timescale be-

tween scatterings is several orders of magnitude longer than the spontaneous emission
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lifetime, so that a negligible fraction of the atoms are radiatively excited at any given

instant. For collisional excitations, the ratio of atomic energy states in thermodynamic

equilibrium (Boltzmann factor) is plotted with temperature in Fig 3.3, demonstrating

that this limit applies for collisional gases <4000K. The assumption that all sodium

in the hermean exosphere is in the ground state is hence justified.

Figure 3.3 Ratio of sodium occupying the 2P states to ground states. Statistical
weights of the degenerate energy states cause the 2P3/2 level to populate at twice the
2P1/2 abundance.

Each ground state atom is able to absorb photons over a range of frequencies such

that φ(ν) is a Lorentzian line profile. The absorption line profile from a collection of

atoms must take into account the Doppler velocity distribution. If in thermal equilib-

rium, the atomic velocity distribution along the any axis (in this case the Mercury-Sun

axis) is given by:

f (vr) dvr =

√
m

2πkT
exp

(
−mv2r
2kT

)
(3.3)
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where k is Boltzmann’s constant, m is the atomic mass, and T has units of Kelvin.

Setting Eq. 3.3 equal to one half the maximum, and substituting ∆ν = ν0vr
c

, it’s

immediately clear that the FWHM of the Doppler broadened profile, ∆νD, is

∆νD = 2
√
Ln2

√
2kT

m

ν0
c

(3.4)

The corresponding distribution of Eq. 3.3 over frequencies is determined by substi-

tuting ν = ν0
(
1 + v

c

)
:

φ(ν)dν = f(vr)
dvr
dν

dν

=
c

ν0
fv

(
c

(
ν

ν0
− 1

))
dν

=

√
mc2

2πkTν02
exp

(
−mc

2 (ν − ν0)2

2kTν02

)
dν

(3.5)

Near line center, the Doppler profile dominates over the natural Lorentzian absorption

profile. Inserting Eq. 3.5 and 3.4 into Eq. 3.2, the absorption coefficient becomes:

kν = n
πe2fluφ(ν)

mec
= n

(
πe2flu
mec

)
2
√
Ln2√

π∆νD
exp

(
−Ln2

(
2 (ν − ν0)

∆νD

)2
)

(3.6)

By setting
∫ s
0
kν(s) ds = 1, the optical depth at line center reaches unity at a column

density of:

N =
mec∆νD

2
√
πLn2e2flu

= 6.6× 1011 atoms cm−2 for D1 at 5000 K

= 3.3× 1011 atoms cm−2 for D2 at 5000 K

(3.7)

Na column density estimates on Mercury have been quoted as high as ∼8 × 1011

atoms/cm2 locally (Sprague et al., 1997). The D2 disk-averaged intensity at Mercury
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Figure 3.4 The volumetric absorption coefficient for the D1 line as a function of the
incident photon wavelength, shown for thermalized gas at several temperatures. Note
that observed wavelengths are shifted by -1.65 Å from the vacuum wavelength given
here due to refraction in air.

typically varies between 1 and 6 MR (Leblanc & Johnson, 2010). For the scattering

rate characteristic to orbital phases with an escaping sodium tail, the D2 emission

from a 3.3 × 1011 atom cm−2 column would be ∼10 MR. Thus, if the brightness ex-

ceeds ∼10 MR locally in regions over the planet’s surface, a full treatment necessitates

radiative transfer calculations involving multiple scattering, surface reflection, and

phase angle corrections (e.g., Killen, 2006). Such opacity effects are not presently

included as the coronagraph and image slicer are not sensitive to exospheric emissions
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directly over the disc. Where necessary, near-disc model results in my work are given

in column density rather than brightness.

Sodium in Mercury’s exosphere does not inherently posses a MaxwellBoltzmann

velocity distribution. If thermodynamic equilibrium does not hold, the distribution of

atomic velocities is no longer governed by Eq. 3.3 and the absorption characteristics

follow accordingly. In any case, the thermal limit is amenable to modification and

useful for comparison with non-Maxwellian populations. Fig. 3.4 shows kν (Eq. 3.6)

as a function of temperature for the D1 line, taking into consideration the hyperfine

structure in Fig. 3.2.

The brightness observed in this work is directly proportional to the equivalent

width of the absorption line, which is a function of both the column density and the

velocity distribution of the gas. Using Eq. 3.1, the equivalent width of the absorption

lines, W , is determined as:

W =

∫ ∞
−∞

(
1− Iλ

Iλ(0)

)
dλ =

∫ ∞
−∞

(
1− e−τλ

)
dλ (3.8)

In the optically thin limit, the broadened profile in Eq. 3.6 is normalized so that

the integral over frequency is unity. In this case, corresponding to the constant sloped

portion of Fig. 3.5, the total absorption for a given line is simply a linear function

of the column density. The resonance scattering rate of the ith emission line, gi, has

units of photons atom−1 s−1, and is simply the product of the absorption cross-section

and the solar flux (Chamberlain, 1961).

gi =
F�λ

R2ν

πe2fi
mec

(3.9)

where F� is the differential solar flux in photons cm−2 s−1 Å−1, R is the atomic he-

liocentric distance in AU, and λ/ν converts between frequency and wavelength units.

The time between any photon scatterings is the sum,
∑

i g
−1
i , and can be as short
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Figure 3.5 Theoretical curve of growth for absorption of the sodium D-line doublet.

as 10−2 s, depending on Mercury’s orbital phase. In the absence of non-radiative de-

excitation or multiple scatterings, a column density, N , in atoms cm−2, is calculated

from the from observed surface brightness, I, in Rayleighs, as simply N = 106I/g.

As seen in figures 3.3 and 3.5, this simple relation between brightness and column

density applies in the limit that the abundance is .1011 atoms cm−2, and either cold

(.4000K) or collisionless.
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3.4 Radiative Transfer: Radiation Pressure

Radiation pressure results from a net momentum transfer at each photon scat-

tering. Each photon absorbed by a sodium atom carries momentum h/λ or E/c. If

z is the anti-sunward vector, and θi and θr are the angles between z and the incident

and reflected directions, respectively, the change in the z component of momentum

from photons of wavelength λ is:

dpλ =
h

λ
cos(θr)−

(
−h
λ
cos(θi)

)
(3.10)

Since the sodium doublet scatters symmetrically about z, the cosine θr term vanishes

when the average of many scatters is considered, that is, over several seconds. The

average θi angle is zero by definition, and thus the momentum of each photon is

transferred completely to the atom. With the scattering rate per atom given by Eq.

3.9, the g-value, the force applied to a sodium atom by radiation is simply the photon’s

momentum times the frequency of scatters:

FRad =
dpλ
dt

=
∑
i

h

λi
gi = maRad (3.11)

where the sum is over all resonantly scattered lines. In practice, only the D-line doublet

need be considered in this sum, as its transition strength is ∼3 orders of magnitude

higher than all other ground state transitions in the visible band combined (cf. NIST

Atomic Spectra Database).

Considerable Doppler shifting relative to the solar Fraunhofer spectrum is in-

herent to Mercury’s high orbital velocity and eccentricity, so that resonant scattering

rates for sodium D line emission vary by more than an order of magnitude during the

hermean year. Since Mercury has a large eccentricity of 0.21, its heliocentric velocity

varies substantially with orbital position: ±10.06 km/s radial velocities occur at true
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Figure 3.6 Doppler shifts in solar spectrum cause large variations in the incident flux
that an Na atom can scatter. The top panel is an example during Mercury’s inbound
orbital leg while the bottom panel is during outbound orbital motion. Frames at
left show Mercury’s orbit to scale, indicating the direction of the resulting radiation
pressure. The frames at right give the solar spectral irradiance, and the asterisks
indicate the amount incident on a Na atom in Mercury’s rest frame. The acceleration
by solar radiation varies by more than an order of magnitude at Mercury because of
its eccentric orbit and Doppler shifting about the narrow solar Fraunhofer absorption
wells.
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anomaly angles of ±90◦. The panels in Fig 3.6 show examples of the incident solar

flux when Mercury is traveling toward the sun in the inbound portion of its orbit

(top panel), and away from the sun on its outbound orbital leg (bottom panel). The

asterisks denote the resonantly scattered flux at Mercury’s surface. Further Doppler

shifting occurs as escaping atoms are accelerated down the tail, and the scattered flux

in the atom’s frame move to the right of the asterisks in Fig 3.6. When Mercury’s

velocity is Sun-ward, sodium atoms accelerating down the tail will Doppler shift into

the solar Fraunhofer absorption wells, where they encounter less sunlight and experi-

ence less acceleration. The opposite effect occurs when Mercury is moving away from

the Sun: atoms accelerating down the tail interact with greater amounts of sunlight as

they go, and experience increasing acceleration. In addition to the Doppler shift effect

from Mercury’s orbital motion denoted by the asterisks, Na atoms moving down the

tail experience strong forces imparted by radiation pressure with this velocity feedback

effect. As the velocity increases, the solar flux at the absorption wavelengths increases,

resulting in further acceleration—a positive feedback loop. After just a few hours, such

atoms Doppler shift out of the D-line absorption wells entirely and experience a more

constant acceleration from the solar continuum. This dramatic effect at Mercury is

unique among planets in our solar system; only comets are known to experience such a

strong positive feedback in radiation pressure. In the case of Hale-Bopp, for instance,

the neutral Na exosphere is pushed out to at least 8 million km (Wilson et al., 1998).

Changes in incident flux at the D1 and D2 rest wavelengths due to Doppler

shifting affect the Na distribution via three physical processes. First, radiation accel-

eration determines the number of atoms which are capable of being pushed beyond

the escape velocity to overcome surface gravity, thereby controlling the fraction of

the source population lost to the tail. Second, radiation acceleration governs how far

the atoms travel down the tail before being photo-ionized, setting the neutral tail’s
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length (τi = 4.4-10.2 h, depending on the orbital distance from the Sun). Third, since

scattered sunlight is being observed, the solar flux available for scattering affects the

tail brightness. Determining the column density at any point down the tail requires

knowledge of the mean heliocentric velocity at that point. Radiation acceleration at

Mercury’s surface changes by nearly a factor of twenty over an orbit, so the escape

rate may vary considerably irrespective of the ejection rate from the regolith.

Radiation pressure plays a key role in overcoming gravity and shaping the exo-

spheric coma into a tail. Atoms escaping the planet’s gravity down the tail represent

the highest-energy component of the sodium exosphere. Although few atoms are more

energetic than the 4.25 km/s escape velocity, bound orbits can be achieved at speeds

of 3 km/s. These atoms can be easily destabilized into escape trajectories by solar

radiation pressure. Modeling of radiation pressure by Ip (1986), Smyth (1986) and

Smyth & Marconi (1995) has shown that atoms with a surface ejection velocity of

at least 2 km s−1 can acquire the additional velocity needed to reach the 4.25 km/s

escape speed, and thus begin their journey down the tail. In particular, during a

portion of the orbit marked by strong radiation pressure spanning 50◦ to 120◦ in true

anomaly, the escape of sodium in Mercury’s atmosphere grows to a significant fraction

of its total surface production rate. An extensive ground-based study, summarized in

Leblanc & Johnson (2010) and Potter et al. (2007), has measured a depletion by as

much as 50% from the expected D2 brightness for a steady source at these phases.

This reduction in disc-averaged brightness could be attributed, at least in part, to

radiation pressure forcing the escape of the sodium atmosphere from the planet.
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3.5 1-Dimensional Approximations in Wide Field Data Anal-

ysis

In modeling the coronagraph data, the down-tail brightness with distance and

the cross-tail expansion of the coma can be well approximated with an analytical solu-

tion. In this approach, the cross-tail brightness in the coronagraph data is integrated

leaving a one dimensional down-tail profile allowing an escape flux to be fit uniquely.

The falloff in emission down the tail is due to photo-ionization, but also due to the

spreading between atoms that results from acceleration, making the gas more diffuse

with distance. The essential elements to this approach include a high resolution solar

spectrum, the viewing geometry, the absorption coefficient, the heliocentric range and

velocity and the photo-ionization lifetime.

3.5.1 Down-tail Velocity Estimation

To interpret the results shown in Fig. 2.12 - 2.15, within the context of Fig.

2.16, a first order estimate must be made of the velocities of sodium gas at various

distances in the observed tails. This simple approximation starts with Na atoms which

have escaped Mercury’s gravity, rather than modeling a velocity distribution in the

gravitational field. Naturally, a distribution of energies and initial ejection trajectories

are present in the exosphere, however, the essential features of tail formation physics

appear with a low (even zero) initial speed away from Mercury, i.e., atoms that have

just enough energy to escape the planet. Using 1-min time steps, radiation acceler-

ation is calculated via scattering rates in the same method described in Sections 3.3

and 3.4. The corresponding displacement and velocity over a time step are found and

applied. A new solar flux is then assigned based on the calculated Doppler heliocen-

tric velocity with a high resolution solar spectrum (Bass2000 solar survey available

at http://bass2000.obspm.fr) and forwarded to the next time step. In this way, a
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heliocentric velocity is calculated and then interpolated to each pixel down the tail.

An example of these calculations is shown in Fig. 3.7 for the case of 18 May 2008.

Figure 3.7 For the 18 May 2008 observing date, a calculation of distance from sur-
face, velocity and acceleration with time, that a sodium atom may experience after
escaping Mercury’s gravity. Small changes seen in the acceleration curve correspond
to Fraunhofer absorption features in the solar spectrum.

Whereas gravity is clearly the dominant force near the surface, within only ∼0.3

to ∼4.5 RM , depending on orbital position, radiation acceleration overtakes gravi-

tational acceleration, so that it can be considered negligible at the large distances

considered here. Down-tail velocities due to radiation pressure can exceed 100 km s−1

at distances of several hundred RM . Omitting the effects of shadowing and Mercury’s

gravity in this calculation of heliocentric velocity arguably ignores processes that effect

particle trajectories near Mercury. However, the vast number of Na atoms captured
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in the coronagraph data are beyond the domain of such effects. Since both shadowing

and gravity effectively slow the transport of atoms down-tail at early times, these

velocity calculations place an upper limit on the Doppler shift.

3.5.2 Transverse velocity

The sodium population in the tail expands as it moves downstream in the direc-

tion perpendicular to the Sun. This motion is essentially the random speed of typical

ejection processes after the atoms have slowed in the gravitational escape. To calculate

the velocity of this expansion, I have fit a Gaussian to the cross-section down the tail

(while the shape of the cross-tail profile is not implicitly Gaussian, this assumption

provides a convenient first order solution as desired). The point spread function taken

from neighboring stars in the field is subtracted in quadrature from the FWHM of

these fits, in order to estimate the true tail width. The mean transverse velocity is

computed from half the change in FWHM with time. Time elapsed for sodium to

reach each position down-tail is derived considering radiative forces as discussed in

the preceding section 3.5.1. The expanding FWHM with down-tail distance is shown

in Fig. 3.8 for the data taken 18 May 2008. I estimate an average transverse velocity

of 1.2 ± 0.1 km/s was present at this time, shown as the solid line in Fig. 3.8.

Table 3.1 gives the tail’s FWHM at several points downstream, and the associated

transverse component of the velocity, V⊥. The average and standard deviations of

all measurements at each distance are given in the last row. Velocity is estimated

by fitting the FWHM out to a distance of 400 RM where Gaussian fits are most

dependable. Uncertainties represent the standard deviations in the coronagraph point

spread function and the FWHM of neighboring points. Variability in the expansion

rate with orbital phase is within one standard deviation of the average and shows no

correlation with radiation pressure. The average expansion rate of the tail (twice the

transverse velocity) determined from the fit widths in Table 3.1 is 2.0 ± 0.4 km/s in
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Figure 3.8 Projected distance down-tail versus the FWHM of a Gaussian fit to the tail
width. Over plotted is the predicted expansion of an atom with a 1.2 km/s transverse
velocity component. The Gaussian fit to the tail width becomes less reliable with
distance as the signal to noise level drops with distance from the planet.

Table 3.1. FWHM of Gaussian fits to the tail width and transverse velocity
components for each observation of the sodium tail.

UT date 40 RM 110 RM 300 RM 500 RM V⊥
(RM ) (RM ) (RM ) (RM ) (km/s)

(1) (2) (3) (4) (5) (6)

31 May 2007 13.6 ± 3.8 26.5 ± 2.0 28.0 ± 5.0 27.4 ± 5.4 1.1 ± 0.2
2 June 2007 19.7 ± 2.6 24.7 ± 2.2 28.7 ± 2.9 57.6 ± 16.5 0.7 ± 0.2
3 June 2007 NA 22.2 ± 2.1 26.5 ± 2.1 32.8 ± 4.8 1.0 ± 0.1
12 Nov 2007 NA 23.0 ± 3.5 30.2 ± 3.3 37.8 ± 18.0 0.8 ± 0.6
18 May 2008 14.4 ± 2.4 20.5 ± 2.4 28.4 ± 4.0 46.1 ± 2.8 1.2 ± 0.1

Average 15.9 ± 3.3 23.4 ± 2.3 28.4 ± 1.3 40.3 ± 11.9 1.0 ± 0.2
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good agreement with the 1.9 ± 0.3 km/s obtained in observations presented in Potter

& Killen (2008).

3.5.3 Down-tail Transit in a Steady Escape

The variation in emission observed in the extended tail profiles results naturally

from the strong dependence on radiation acceleration. As mentioned earlier, this de-

pendence is comprised of three separate effects: radiation acceleration (1) enhances

the rate of escape, and (2) determines how far atoms travel down-tail before ionization,

while (3) the down-tail velocity determines how much solar flux will be made available

for resonant scattering. Considering orbital positions alone, the observations made in

November 2007 (strong tail) and January 2008 (non-detection) effectively isolate the

latter two of these three effects. With comparable radiation acceleration upon ejec-

tion from the surface, the escape rates should be quite similar at these times assuming

steady state sources. Under steady state conditions, a similar radiation pressure liber-

ated roughly the same amount of sodium, but heliocentric velocity changed sign when

Mercury was on the outward and inward leg of its orbit, respectively. As shown in Fig.

2.16 and 3.6, resonant scattering occurred at opposite sides of the Fraunhofer well,

so that identical fluxes of sodium into the tail would result in very different observed

brightness for these two cases. For the January 2008 non-detection, Doppler shifting

into the Fraunhofer absorption feature stagnated the neutral flow downstream, so that

the atoms presumably were mostly ionized by the time they had emerged from behind

the coronagraph mask. Neutrals that survived long enough to come into view radiated

very little on 15 January 2008, because the incident flux available for scattering was

only 5% of the solar continuum. The results of a 1-D calculation for the radiation

acceleration (described in Section 3.5.1) for the 12 November 2007 and 15 January

2008 observations are plotted in Fig. 3.9, quantitatively revealing the effects of a

large difference in scattering and radiation acceleration as the cause of the measured
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brightness variation. Since sodium scatters more sunlight at D-line wavelengths than

at any other wavelength, scattering rates in 3.9 are approximately proportional to the

acceleration as shown on the y-axis of Fig. 3.9.

Figure 3.9 Comparison of predicted accelerations and scattering rates or g-values for 12
November 2007 and 15 January 2008 observation dates. Atoms will have traveled 1940
and 340 RM from the planet respectively during this 15 hour period. The large well
shown in the 15 January 2008 and wiggles shown in the 12 November 2007 acceleration
profiles correspond to Fraunhofer absorption features in the solar spectrum.

3.5.4 1D Estimation of escape rates

It is possible to compute brightness profiles produced from different escape rates

for the purpose of comparison with our two sets of observations which were taken over

daily (top) and monthly (bottom) timescales. To do so, a constant flux of atoms under

the force of radiation pressure alone is accelerated away from Mercury and ionized

using 1 min time steps. A rate coefficient derived from the theoretical ionization cross-

section for the quiet Sun was determined by Huebner et al. (1992) and was scaled with

heliocentric distance to be applied to these conditions. Scattering rates were calculated

for every pixel using the estimated Doppler shifts. Escape rates were found by a least
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squares fit using a test range of (3.0-14.0) × 1023 atoms s−1. Gravity and shadowing

effects from the disk were omitted. This method assumes single scattering, and that

optical depth is small for both D1 and D2 over the entire down-tail path length. For

coronagraph observations made in 2007 and 2008 the results appear in Fig. 3.10,

organized into measurements made over a 4 day times span and a several month time

span.

The escape rates quoted in Fig. 3.10 are approximate lower limits on the amount

of Mercury’s Na that leaves the surface-bound exosphere. This is because Na which is

ejected close to the minimum escape energy can spend significant time climbing out of

Mercury’s gravity, during which time a substantial fraction is ionized. Also, since an

upper limit on the down-tail velocity is used in the calculation, this corresponds to an

upper limit in the scattering rate, meaning more atoms may be necessary to produce

the observed brightness. Given these considerations, the escape rate at maximum

radiation pressure on 12 November 2007 was significantly larger than any previously

published estimates (Schmidt et al., 2010).

The best candidate in Fig. 3.10 for short term, hourly changes in escape occurs on

12 November 2007 at nearly the maximum radiation acceleration experienced at Mer-

cury. Unfortunately, this profile also exhibits the highest noise due to sky subtraction

in our data sets. Leblanc et al. (2009) attributed hourly changes in localized emission

to changes in the radial component of the IMF; however, total emission showed little

variation in their study. Sprague et al. (1997) found diurnal variations with emission

highest in morning, and enhanced emissions localized about radar-bright regions on

the planet’s surface. Such studies suggest that variation in flow rates into the tail on

hourly timescales may be common. Analysis of short term variability merits further

investigation in conjunction with modeling and additional data near this orbital phase

in order to better characterize the baseline rate of atmospheric escape.
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Figure 3.10 Total emission in kiloRayleighs for three observed sodium tails over short
timescales spanning 4 days (top) and long timescales spanning nearly 1 year (bottom).
The recorded total emission shown is the summed emission at pixel spaced radial
distances from Mercury. Predicted emission from a fixed escape rate found from a
least squares fit is the over plotted curve.
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In all but one of the tails imaged during the first two years of this study, increased

escape rates were found at times of higher radiation acceleration. Furthermore, the 18

May 2008 outlier of this trend is within the uncertainty limit. Near the surface, the

exospheric depletion corresponding to these increased escape rates has been observed

by other groups. Observations when Mercury is on the out-bound leg of its orbit

by Potter & Morgan (1997) and Potter et al. (2007) demonstrate a trend in which

exospheric column density decreases as radiation acceleration increases. A 4 year in-

vestigation of emissions at Mercury’s disk by Sprague et al. (1997) could not confirm

this result, however. As radiation pressure increases, the global emission reduction

totaling 20% found by Potter et al. (2007) is approximately anti-correlated with the

tail emission increase in the coronagraph data. Although both data sets show consid-

erable scatter, this suggests the general expectation that losses in the surface-bound

exosphere result in gains to the tail’s population. Assuming these losses in the Na

exosphere with increasing radiation pressure populate the tail, and that escape rates

are negligible at minimum radiation pressure, then our 12.6 × 1023 atoms s−1 into the

tail would be 20% of a surface source rate, i.e., 6.3 × 1024 atoms s−1. This source rate

is in agreement with the (5-9) × 1024 atoms s−1 total source estimated by Ip (1990),

and slightly above the 5 × 1024 atoms s−1 assumed by McClintock et al. (2008) based

on MESSENGER measurements.

However, previous escape rate estimates based on ground-based spectroscopic

and in situ measurements are less than those presented here. For example, the 31

May 2007 observation yields an escape of 6.9 × 1023 atoms s−1. This image was

taken with identical orbital phase to a spectrograph tail measurement made by Potter

& Killen (2008) on 12 June 2006, in which approximately half this escape rate was

estimated. The greatest escape rate in the Potter & Killen (2008) study is 4.9 ± 1.1

× 1023 atoms s−1, and occured during the largest radiation pressure of 155.5 cm s−2.
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If a linear interpolation of escape with radiation acceleration is assumed this is again

nearly half the escape rate estimated in our findings. This may suggest that a weakened

source of high energy Na atoms was present during their 2006 observations; however

the authors note uncertainties due to shadowing, and some atoms lying outside the

projected slit length of ∼6 RM .

Using an initial anti-sunward velocity of 2 km/s, McClintock et al. (2008) find a

lower limit of 6× 1023 atoms s−1 escaping during the first MESSENGER fly-by. Similar

radiation acceleration occurred in the opposite orbital leg during our 12 November 2007

measurement, suggesting a very large escape rate of 12.6 × 1023 atoms s−1, though

admittedly this was also the date with the highest noise levels. I propose that this

difference in rate of escape is due to a change in radiation pressure with time as

shown in Fig. 3.9. This would suggest that the escape rates are governed not only by

radiative forces upon the initial ejection of surface sodium, but on how these forces

are sustained in the atom’s subsequent motion.
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Chapter 4

Modeling The Sodium Tail

4.1 Introduction

This chapter details a 3-dimensional numerical model of Mercury’s sodium exo-

sphere. This tool enables characteristic properties of the different sources sustaining

the exosphere to be simulated for direct comparison with observations of the Na ex-

osphere. It is the only model which has been developed for simulating emission in

the distant sodium tail. It is also the first model of Mercury’s exosphere to include a

full treatment of temperature dependence in atom-surface interactions (Yakshinskiy

& Madey, 2005), as well as spatial anisotropies both in the Na surface concentra-

tion (Evans et al., 2013) and ion precipitation (Winslow et al., 2012), based on the

MESSENGER spacecraft data.

4.2 Numerical Monte Carlo Model

While a 1-dimensional method is sufficient for estimating the escape flux, inves-

tigating the source mechanisms at the surface which sustain this escape requires three

dimensions. A kinetic Monte Carlo approach is described in this section with results

in chapter 5. The essential elements in the model include the gravity of Mercury and

the Sun, radiation pressure, photoionization, the speed and direction of ejection from

the surface, parameters governing atom-surface interactions, and a thermal model of

the surface.
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4.2.1 Original Lunar Code

The present model for Mercury has its origins in a numerical Monte Carlo model

of the lunar exosphere presented in Wilson et al. (2003), and much of the fundamental

architecture remains the same. In the original lunar model, ∼104 test particles, each

representing many sodium atoms, were launched from random locations on the lunar

surface in random directions. The particle launch times were randomly distributed

over the duration of a simulation, chosen to be several photoionization lifetimes for

sodium to achieve steady state between ejection and ionization rates. The particle’s

velocity was initially chosen at random within a 0.1 km s−1 range about a center veloc-

ity. The equation of motion was integrated using a 4th order Runge-Kutta algorithm

with an adaptive time step, considering the instantaneous acceleration by radiation

pressure and the gravity of the Moon and Earth. Radiation pressure was switched off

in the umbra where atoms are not illuminated. Scattering, and hence radiation pres-

sure, are calculated using the heliocentric velocity and a solar spectrum normalized

for intensity at 1 AU. After running the model many times at different increments

in ejection velocity, the results can be back-filtered and weighted to give an energy

distribution. A total release rate in atoms per second is chosen, so that each test

particle in the model represents a collection of atoms that decreases in number with

photo-ionization over time. The line of sight column density is computed by collaps-

ing the three dimensional result along an axis. Brightness is calculated based on each

particle’s incident Doppler-shifted solar flux, the photo-ionization loss, the solar disk

visibility, and the line of sight column density of test particles. The Wilson et al. (2003)

model provides an outstanding foundation for a simulation of Mercury’s exosphere.

This section describes the Mercury simulation in detail and documents my adaptation.

Elements in this section are hard coded directly into the model, whereas parameters
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in the following Section 4.3 are inputs specified by the user that are specialized to

each model run.

4.2.2 Adaptation for Mercury

The model of Mercury’s sodium exosphere releases particles from the surface at

a defined rate. Monte Carlo methods are used to select the location and velocity of

the particle’s ejection from within specified distributions. Each particle represents a

large number of Na atoms. The 3-dimensional spatial distribution of ∼106 particles

is calculated from their trajectories governed by radiation pressure and gravity. After

time-integrating the effects of photoionization, the brightness is determined from the

line-of-sight column density in Earth’s direction and the incident solar flux in each

particle’s Doppler frame.

Integration Technique

The motion of particles in the simulation is governed by the equations:

d2x

dt2
= −GM�x�

r3�
− GMMxM

r3M
+
γhx�
mr�

(
gD1

λD1

+
gD2

λD2

)
d2y

dt2
= −GM�y�
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γhy�
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(
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+
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)
d2z

dt2
= −GM�z�

r3�
− GMMzM

r3M
+
γhz�
mr�

(
gD1

λD1

+
gD2

λD2

) (4.1)

where r� and rM are the instantaneous distances to the body centers of the Sun and

Mercury, respectively, G is the gravitational constant, M is the body mass and h

is Plank’s constant. The values xM , x�, etc., represent the scalar projection of each

particle’s distance to the Mercury and Sun centers, respectively, along a Cartesian axis.

The instantaneous scattering, g (r�, ˙r�), is evaluated using Eq 3.9 and multiplied by

the fraction of the limb-darked solar disc, γ, that is visible from each particle’s location

(Cox, 2000). The set of second-order differential equations in 4.1 is solved using a 4th
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order adaptive step-size Runge-Kutta method. For the details of this integration

method and the adaptive time step algorithm, the reader is referred to Section 16.2 of

Press et al. (2007). The Runge-Kutta integrator computes the equation of motion for

each test particle along each Cartesian axis over one time step given its instantaneous

initial values, e.g., x0, ẋ.

Figure 4.1 Particles released tangentially from Mercury’s north pole. Increasingly
larger orbits correspond to ejection velocities of 3.006, 3.2, 3.4, 3.6 and 3.8 km s−1.
The apex of the inner-most orbit is about 120 m from Mercury’s surface.

The result of the integration is validated by testing the orbits of particles in

the absence of radiation pressure, performed in a stationary frame with the origin

at solar system barycenter. For each point on the surface at the time of ejection,

Mercury’s instantaneous velocity is added as a vector to the initial velocity of the

particle. Vertically ejected particles are confirmed to escape with a threshold of ve =
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√
2GM
r

= 4.25 km s−1. Tangentially ejected particles are verified to attain circular

orbits at vO = ve√
2

= 3.0 km s−1. Fig. 4.1 shows the result of particles tangentially

ejected from Mercury’s north pole at this minimum orbital velocity, vO, as well as

at several higher speeds. Stable bound orbits about both the planet and the sun in

found in a fixed coordinate frame. The equivalent calculation of orbital motion using

a single body and an inertial frame is trivial. The Hill radius, where solar gravitation

becomes greater than the gravitational force from Mercury’s, varies from 70 to 105

RM over Mercury’s orbit so that the gravity of both bodies is relevant to atoms in

these data sets.

Coordinates Frames

The original lunar model was implemented in an inertial frame in which

one Cartesian axis was centered at the Moon and fixed to the sun-ward direc-

tion. In the case of Mercury, a Cartesian coordinate frame with the origin at

the solar system barycenter at the J2000 epoch seemed more fitting. This frame

was chosen for simplicity, as it is fixed with respect to time, and is a default

reference frame for the Jet Propulsion Laboratory’s Horizons ephemeris system

(http://ssd.jpl.nasa.gov/horizons.cgi) so that orbital elements computed in the model

can be quickly cross-checked. The architecture of the Mercury model was constructed

with the objective of being directly comparable to observations from the MESSENGER

spacecraft. The information needed to compute the flight path of the spacecraft is

available from NASA’s Jet Propulsion Laboratory in the form of a SPICE (Spacecraft

Planet Instrument C-matrix Events) kernal (Acton, 1996). Therefore, the coordinate

system follows the SPICE standard in which the X-Y plane is taken to be the Earth’s

orbit at the J2000 epoch.

The SPICE ephemeris data allows a calculation of the position of any major solar

system body with respect to another at a given time. Hard coding this capability into
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the Mercury simulation allowed many advances from its lunar code predecessor. For

example, at any given time, the coordinates of the Earth with respect to Mercury

permit the computation of a rotation matrix such that a particular Cartesian axis

aligns with the line of sight. The matrix product with the particle coordinates can

then be collapsed along one axis to give the line of sight column density from Earth.

Column densities in the lunar code were limited in that the model’s output could only

be viewed from directions along a body-fixed Cartesian axis.

Discrete Velocity and Spatial Distributions

Initially, the Wilson et al. (2003) model accounted for a source’s energy distribu-

tion by running the simulation many times at different velocity bins and back-filtering

the results to a desired weighting scheme. I instead chose to program a Monte Carlo

method in which the ejection energy is selected at random from within a distribution.

To reduce statistical noise, the simulation is iterated many times, each with the ran-

dom number seed passed; the subsequent results are stacked and averaged along the

line of sight. Some mechanisms, like ion sputtering, may eject atoms preferentially

in the direction of zenith (Johnson et al., 2002). The Monte Carlo surface ejection

was modified to allow anisotropic weighting of the ejection angles relative to the sur-

face normal. The weighting schemes for both ejection velocity and ejection angle are

specified inputs for simulating different processes. As the planet’s rotation states are

also encoded in the SPICE ephemeris data, it is possible to convert between plane-

tographic longitude and latitude coordinates, local time coordinates, and non-inertial

J2000 coordinates. This enables the simulation of localized sources of the exosphere,

whereas spatially homogeneous sources were previously assumed.
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Surface Interactions

Particles impacting the surface during the simulation either adsorb to the surface

or bounce in a random direction. In my Schmidt et al. (2012) model, atoms that impact

the cold ∼100 K nightside were assumed to adsorb to the surface as several authors

have proposed (e.g., Leblanc & Johnson, 2003; Burger et al., 2010). I fit a dayside stick-

ing probability of S = 1.55−(6.53× 10−3)T +(1.1× 10−5)T 2−(6.7× 10−9)T 3 to the

laboratory measurements of Na adsorption to thin SiO2 films of various temperatures

by Yakshinskiy & Madey (2005). With each bounce, a particle’s energy settles toward

an energy characteristic of the local surface temperature, EThermal, according to a ther-

mal accommodation coefficient α, where α = (EFinal − EInitial)/(EThermal − EInitial).

For an α quartz (SiO2) surface at 600 K, the thermal accommodation was determined

to be 0.62 (Hunten et al., 1988). However, subsequent models have shown α more likely

to be in the range of .1 to .3 (e.g., Mouawad et al., 2011). Under these conditions,

test particles in Mercury’s hottest regions generally experience several bounces across

the dayside, with high adsorption to the nightside. As exospheric Na reabsorbed to

the surface is likely to bond ionically with oxygen (Madey et al., 1998). Therefore,

the same ejection characteristics are applied to both original regolith sodium as well

as exospheric Na absorbed by the surface.

Surface Temperatures

The localized temperature of Mercury’s surface is used in modeling the behavior

of particles impacting the planet. Initially, I neglected the thermal inertia of Mercury’s

lithosphere. Following Leblanc & Johnson (2003), the dayside surface temperature in

Schmidt et al. (2012) was assumed to vary as:

T (λ, µ) = TNight + (TSub−solar − TNight)[cos(λ)cos(µ)]1/4 (4.2)
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where TNight is the average nightside surface temperature of 100 K and λ and µ are

the latitude and longitude relative to the sub-solar point. To first order, the sub-solar

point temperature is well represented as a blackbody in thermal equilibrium:

TSub−solar = T�

[(
R�
r�

)2
1− a
e

]1/4
(4.3)

where R� is the solar radius; a is the 0.106 albedo (Cox, 2000); e is the planet’s emis-

sivity, fixed at 0.95 (Hale & Hapke, 2002); and T� is the effective solar temperature

(5777 K), giving 700 and 570 K at aphelion and perihelion, respectively.

Recent estimates based on MESSENGER Gamma Ray Spectrometer data in-

dicate that the concentration of sodium in the top few cm regolith depends on the

maximum annual surface temperature (Evans et al., 2013). Prompted by this de-

velopment, I have since improved the simple model of Eq. 4.2 to include thermal

conduction. The impetus for this correction stems not only from the capability to

map the Na surface concentration, but also to better simulate the temperature de-

pendence of sources and surface interactions. In future work, the thermal gradient in

the soil may also prove useful in incorporating diffusion effects from depth into the

model, an effect which is quite poorly constrained. It’s worth noting that this is the

first time a model of an exosphere has incorporated a dawn-dusk asymmetry induced

by thermal inertia in a body’s lithosphere. Considering conduction, energy balance at

the surface requires:

S� (1− a)

r2�e
cos(λ)cos(µ) = σT 4 − κdT

dz
(4.4)

where S� is the total solar irradiance in W m2 at 1 AU (Cox, 2000), σ is the Stefan-

Boltzmann constant and the thermal conductivity, κ, is 1.8× 108 erg cm−1 deg−1 sec−1

(Wang & Ip, 2008). The temperature gradient at the surface in the last term is given
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by the one dimensional equation for the heat conduction along a direction z that is

normal to the surface:

ρc
∂T

∂t
=

∂

∂z

(
κ
∂T

∂z

)
(4.5)

where ρ is the mass density, taken as 2.8 g cm3 and the specific heat, c, is 4.6 × 107

erg g−1 K−1 (Wang & Ip, 2008). Eq. 4.5 is solved with the aid of an IDL code provided

by John Spencer (available at http://www.boulder.swri.edu/ spencer/thermprojrs),

with the slab boundary method described in Spencer et al. (1989). An endogenic heat

flow of .02 W m−2 is assumed to cross the model’s lower slab boundary (Vasavada

et al., 1999).

Due to thermal inertia, the dusk hemisphere is slightly hotter than the dawn

hemisphere. As an example, the equatorial surface temperature is shown in Fig. 4.2

as a function of time. As Mercury’s orbit becomes approximately tidally synchronous

near perihelion, the incident solar flux at a given surface location is not sinusoidal

over a diurnal period. In fact, Mercury’s orbital motion is so fast at perihelion that

the westward motion of the Sun completely stops and briefly becomes retrograde.

The time variation of solar insolation across the surface is computed using SPICE. To

demonstrate the thermal effects of Mercury’s spin-orbit resonance, Fig. 4.3 shows the

result of this thermal model for a point on the equator over one diurnal period. This

profile can be compared directly with Fig 1. of Wang & Ip (2008), in which equations

equivalent to 4.4 and 4.5 are solved using a Crank-Nicholson finite difference routine for

the same surface point. Although I have included endogenic heat flux and emissivity,

the results of this thermal model bare no significant deviations from that of Wang &

Ip (2008). In this sense, the solution is validated against their thermal modeling.

The geographic location of the sub-solar point alternates with each successive

orbit, a consequence of the planet’s 3:2 spin orbit resonance. The variation of the
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Figure 4.2 Modeled equatorial surface temperature as a function of local time. The
asymmetry of the profile results from the thermal inertia of Mercury’s lithosphere and
induces spatial asymmetries in exospheric sources and surface interactions.

maximum surface temperature over one diurnal period is shown in a Mercator projec-

tion in Figure 4.4. The planet’s 3:2 spin-orbit resonance and eccentric orbit produce

two distinct hot poles. The slightly non-circular shape of these hot poles is again a

consequence of thermal inertia in Mercury’s lithosphere. Very recent studies with the

MESSENGER Gamma Ray Spectrometer (GRS) have shown the surface concentra-

tion of sodium with a depth of a few cm in the regolith may be an inverse function of

the maximum surface temperature (Evans et al., 2013). If this is the case, longitudinal
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Figure 4.3 The modeled surface temperature for a point on the equator that intercepts
the sub-solar point at perihelion. Due to the planet’s 3:2 spin orbit resonance, a diurnal
period is 175.94 days, and an opposite hemisphere faces the Sun with each orbit.

inhomogeneities in the planet-wide Na concentration may also exist and be distributed

within the regolith inversely proportional to Fig. 4.4.

Photoionization and solar drivers

A high resolution solar spectrum is needed to accurately predict the feedback

characteristics of radiation pressure. The 1-dimensional solution for Mercury pre-

sented in Schmidt et al. (2010) utilized the Bass2000 solar survey (available at

http://bass2000.obspm.fr) and scaled to absolute values in the continuum measured
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Figure 4.4 Maximum surface temperatures with planetographic location on Mercury.
0◦ longitude and latitude is defined at the sub-solar point at perihelion.

by the SORCE (Solar Radiation and Climate Experiment) satellite. As the Bass2000

spectrum could in principle contain trace terrestrial contamination, the solar spectrum

used by Killen et al. (2009) was subsequently adopted, though deviations between the

two were minimal. Doppler shifts in each particle’s frame are interpolated to the data

points increments of 50 mÅ. At these visible wavelengths, variation in the scattered

flux with solar activity is negligible.

The energy required for singly ionizing a sodium atom is 5.139 eV, corresponding

to photon wavelengths short-ward of 2411 Å. Electron-impact ionization lifetimes are

much longer than photoionization lifetimes at Mercury, and while electron-impact

ionization dominates in the Io nebula (Carlson et al., 1975), it is negligible here. The
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photoionization rate in this work is taken to be 1.69 × 105 s at 1 AU, determined by

(Huebner et al., 1992) for the theoretical absorption cross section and subsequently

verified in observations of the sodium tail of comet Hale-Bopp (Cremonese et al., 1997).

Because sodium has a relatively low ionization potential, the product of the UV flux

and the wavelength-dependent cross section for photo-ionization is dominated by solar

continuum, so that ionization rates vary by less than ∼10% with solar cycle (Huebner

et al., 1992; Han et al., 2006). This small variability in UV flux is not corrected for,

as the wavelength dependence in the photoionization cross-section remains uncertain.

In particular, it has been found that between 500 Å and 1200 Å, the experimental

cross-section is larger than the theoretical cross-section and shows a broad feature

which has yet to be explained (Huebner et al., 1992). Thus solar activity is neglected

to good approximation, and the e-folding photo-ionization lifetime for sodium simply

increases with distance squared and varies from 4.4 to 10.2 hours at the surface because

of Mercury’s eccentric orbit.

The lunar code was adapted so that photo-ionization removes a fraction of atoms

from the simulation at each time step in the integration, taking into account each

particle’s heliocentric range. Doing so also accounts for shadowing effects by Mercury’s

disc; the ionization lifetime increases and radiation pressure decreases in the umbra

and penumbra according to distance and the fraction of the solar disk seen.

4.3 Source Processes and Their Intrinsic and Potential Time

Variabilities

Mercury’s atmosphere is well approximated as collisionally thin, so that an atom’s

velocity retains the properties associated with its source mechanism at the time of

surface ejection, modified only by subsequent gravitational and radiative forcing or

surface interactions. Energy distributions in exospheric sodium can therefore be non-
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Maxwellian. Fig. 4.5 shows a comparison of energy distributions that have been

attributed to source processes at Mercury, compiled from several studies. This section

summarizes these sources with particular attention to their ability to produce escaping

sodium.

4.3.1 Thermal Evaporation

While thermal evaporation may be important in mobilizing atoms about the

surface, even atoms that are thermal equilibrium with the hot surface temperature at

the sub-solar point are not energetic enough for gravitational escape. As an efficient

means of lofting atoms, thermal effects, in combination with radiation pressure, may

enable transport from the day to night sides, where atoms stick to the cold surface.

If space weather effects do not significantly regulate the Na supply to the topmost

surface, thermal desorption rates will possess north-south symmetry and only a slight

local time asymmetry (cf. Fig. 4.2). Several measurements indicate that the bulk

atmosphere is super-thermal (e.g., Killen et al., 1999). Since thermal Na remains

bound, the process cannot be constrained by data of the Na tail. At such low energies,

observable D line emissions are confined to being near the disc; the contribution to the

tail population is negligible, and thus an in-depth study of this process is not relevant

to these data. The efficiency of other source mechanisms, however, has been shown to

be temperature dependent, as discussed in the next section.

4.3.2 Photon Stimulated Desorption

Coincidentally, the energy required to liberate sodium from regolith surface grains

is approximately equal to the photoionization energy. The solar flux below 2500 Å in

wavelength (≥5 eV) will photo-desorb Na from Mercury’s surface (Yakshinskiy &

Madey, 1999). The Sun’s specific intensity is higher longward of ∼2000 Å in the

blackbody continuum than at Lyman α (1216 Å), where emission varies strongly with
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Figure 4.5 A comparison of energy distributions, normalized to the most probable
value, for sodium released by various processes that have been applied at Mercury:
(1) 3000 K Maxwellian used in modeling by Leblanc & Johnson (2003). (2) 5000 K
Maxwellian used in modeling by Mouawad et al. (2011). (3) Distribution fit by Wiens
et al. (1997) to measurements of sodium ejected from an Na2SO4 surface bombarded by
energetic ions. (4) Sigmund-Thompson type distribution for 1 keV protons, applied in
modeling by Wurz et al. (2010). (5) 1500 K Maxwellian Leblanc & Johnson (2003) fit
to Yakshinskiy & Madey (1999) ESD data. (6) Distribution fit by Johnson et al. (2002)
for laboratory measurements of icy surfaces bombarded by 200 eV electrons, modified
with a cutoff term at high energies Wurz et al. (2010). (7) Sodium thermalized to 650
K, approximating the sub-solar point surface temperature.
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solar activity. Although it has been argued that solar activity significantly affects

the PSD rate in Mercury (e.g., Killen et al., 2007; Mouawad et al., 2011), variability

in the Herzburg Continuum between 2000 and 2420 Å was estimated to be less than

7% over the last three solar cycles (Krivova et al., 2009). Furthermore, the first three

years of the Mercury data set spans during a deep minimum in the solar activity cycle.

Solar-driven variability in PSD sources are hence neglected in these simulations.

Empirical energy distributions of desorbed sodium are often derived by time-

of-flight measurements under electron bombardment, rather than UV radiation, as a

wide experimental energy range for electron-induced excitations is more readily avail-

able under laboratory conditions. Electron-stimulated desorption is a charge transfer

process similar to PSD, with comparable cross sections and an identical excitation

threshold of ∼4 to 5 eV (Yakshinskiy & Madey, 1999). While desorption of sodium

into the exosphere by electrons is negligible compared to that released by photon stim-

ulation, the energy distributions of ejected sodium are quite similar, so that electron

stimulated desorption (ESD) measurements can be substituted for the effects of UV

photons.

Johnson et al. (2002) have measured the energy distribution of sodium desorbed

by 200 eV electrons from an icy surface as:

FPSD (E) = β(β + 1)
EUβ

(E + U)2+β
cos(θ) (4.6)

where θ is the angle of ejection relative to the normal; β = 0.7 is a parameter deter-

mining the shape of the curve; and U is a characteristic energy, equal to 0.052 eV for

sodium, related to the surface binding energy. In addition, these authors fit an E2

falloff to their high-energy data points near 1 eV. As the ejection energy must not

exceed that of the impacting photon, I modify Eq. 4.6 for a lower energy tail using

the term suggested by Wurz et al. (2010).
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Samples that are better analogues to Hermean regolith than water ice are known

to desorb Na with lower energies. Yakshinskiy & Madey (1999) found the energy

distribution of ESD from SiO2 surfaces to be similar to that of a 1200 K Maxwellian,

but with a higher-energy tail. Leblanc & Johnson (2003) chose a 1500 K Maxwellian

to fit these data. The energy distribution of ESD from a lunar sample was found to

be shifted toward lower velocities than that of SiO2, peaking around 0.8 km/s instead

of 1 km/s (Yakshinskiy & Madey, 2004). My Schmidt et al. (2012) study simulates

both a 1500 K Maxwellian and a higher-energy distribution used in the study by Wurz

et al. (2010), where I have imposed a 10 eV cutoff; these are shown in Fig. 4.5 by the

green solid and dashed lines, respectively.

Killen et al. (2004) proposed that the supply rate of sodium to the topmost re-

golith layers is diffusion limited to 107 cm2 s−1. The diffusive supply may be enhanced

by ion precipitation, impacts, or re-absorption of Na. Increased temperature can also

raise the diffusion rates to the topmost layers affected by PSD. Laboratory analysis

of PSD yield in lunar samples by Yakshinskiy & Madey (2004) showed efficiency in-

creases by a factor of 10 as the temperature of the sample was increased from 100 to

470 K. This effect was reversible, and was attributed to the enhanced diffusion of Na+

to oxygen bonding sites. However, sodium yields via electron-stimulated desorption

have been shown to decrease by a factor of 3 as the sample temperature increased from

400 to 600 K (Yakshinskiy & Madey, 2005). No temperature dependence in the PSD

yield was considered in the Schmidt et al. (2012) model and the spatial dependence

of desorption rates was assumed to be photon limited, varying only with the cosine

of the solar zenith angle. It should be noted, however, that proper modeling of the

spatial distribution of PSD sites on the surface is currently debated. Na redistribution

over the surface remains model dependent (e.g., Leblanc & Johnson, 2003; Mura et al.,

2009), and the localized enhancement of PSD yield by ion impacts is not yet quanti-
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fied uniquely (Burger et al., 2010). For simulating the distant tail, the precise regional

origins of desorbed sodium is not critical, as these inhomogeneities are largely smeared

out by solar radiation pressure. Nevertheless, a spatial dependence in the escaping

fraction of desorbed atoms is discussed in Section 5.3.1.

Following the very recent MESSENGER detection of inhomogeneities in the sur-

face concentration of Na (Evans et al., 2013), the model’s source function was improved

to account for second order effects. For a given point on the surface, the local PSD

rate is currently evaluated as:

ΦPSD =
N cos(Z)

∫
σλφλdλ

R2
Ae

−Ea
kT (4.7)

where N is the sodium concentration per cm2 per mean free path in the regolith, Z

is the solar zenith angle, σλ is the PSD cross section in cm2, φλ is the solar spectral

irradiance at Earth in photons cm−2 s−1 and R is the range to the Sun in AU. N is equal

to 7.4 × 1014(fNa) (Killen et al., 2001). To first order, the abundance, fNa, is assumed

to vary with the maximum biannual surface temperature as 0.056× T−0.345max , which is

consistent with current estimates based on MESSENGER Gamma Ray Spectrometer

data (Evans et al., 2012, 2013). A Mercator projection of Tmax in planetographic

coordinates was shown in Fig. 4.4. The temperature dependence of the yield follows an

activation energy, Ea, of 0.02 eV (Yakshinskiy & Madey, 2004). Finally, two constants

have been combined into A: a 1/3 reduction in yield owing to porosity (Cassidy &

Johnson, 2005) and a factor of 10.2 to normalize the temperature dependence to unity

at 100K, where the measured PSD cross-section for a lunar sample is σ = 10−20 cm2

at hν = 5 eV (Yakshinskiy & Madey, 2004). The wavelength dependence of the PSD

cross-section is not well known, but 10−20 cm2 is commonly assumed over wavelengths

short of hν = 5 eV and will be adopted here. The integrated solar irradiance, φ, is

2.2 × 1014 photons cm−2 s−1 over wavelengths hν ≥ 5eV as measured by the SORCE
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(Solar Radiation and Climate Experiment) spacecraft. At 0.4 AU, Eq. 4.7 gives a

total PSD rate of 2.4 x 1025 Na atoms s−1 and a flux of 1.4 × 108 Na atoms cm−2 s−1

at the sub-solar point. As this is nearly a decade in excess of the (Killen et al., 2004)

estimate of the diffusion limited Na supply, diffusion rates therefore restrict PSD in

hot regions where adsorbed Na is negligible.

Photo-desorbed Na should display north-south symmetry provided there is hemi-

spheric symmetry in the surface concentration, N. However, MESSENGER studies

have inferred latitudinal asymmetries in both the location and the flux of impacting

solar wind ions (Winslow et al., 2012), and local time asymmetries in Na+ photo-ions

(Raines et al., 2013). To account for the influence of impacting ions on PSD in this sim-

ulation, the diffusive supply to the topmost surface is raised by the unity-normalized

precipitation rate times an enhancement factor, κ, following Burger et al. (2010). In

addition to cusp regions, PSD may be enhanced near dawn from cold-trapped and

ion-implanted Na as well as ion-enhanced desorption sites accumulated during the 88

day Mercury night (e.g., Sprague, 1992).

To better estimate the energy imparted to a photo-desorbed atom, I have since

fit the Yakshinskiy & Madey (1999, 2004) laboratory measurements of the energy

distributions with 2 different functions as shown in Fig. 4.6. A kappa distribution

(κ = 1.8, 500K) is offset by .5 km s−1 in order to match the solid line of the lunar

samples. The dotted line shows an 800K Maxwellian, offset by .2 km s−1, providing a

good fit to the faster desorption measured from quartz (SiO2) surfaces.

4.3.3 Ion Sputtering

A formula proposed by Thompson (1968) is commonly applied to the energy dis-

tribution of sputtered sodium in Mercury (e.g., Lammer et al., 2003; Wurz et al., 2010).

Such a distribution results in nearly all physically sputtered atoms leaving Mercury’s

gravitational well. The orange dotted line (4) in Fig. 4.5 shows the distribution used



95

Figure 4.6 Speed distributions for photo-desorbed and sputtered Na. The thick black
line and asterisks show distributions from time-of-flight measurements of desorption
from a lunar sample and SiO2 surfaces, respectively (Yakshinskiy & Madey, 1999,
2004). Input parameters in this exosphere model include the dashed and dotted line
fits to these data, as well as the high velocity dash-dot profile fit by Wiens et al. (1997)
to Na sputtered from sodium sulfate.

in the study by Wurz et al. (2010) for the case of 1 keV solar wind protons, which I

assume here to be typical impactors in regions of open field lines.

Other empirically derived energy distributions suggest the sputtered population

may be less energetic. The sputtered velocity distribution measured by Wiens et al.

(1997) (Fig. 4.6 dash-dotted line) is used in my current study, although it should be

noted that many models invoke a theoretical Sigmund-Thompson energy distribution

that is substantially higher (e.g., Burger et al., 2010; Wurz et al., 2010). Wiens et al.

(1997) fit a Thompson-Sigmund energy distribution of the form:

FIS (E) ∝ EU

(E + U)α
cos(θ) (4.8)
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where θ is the angle of ejection relative to the surface normal, and obtained a profile

spread over a much lower range of energies. Sodium ejected from a Na2SO4 pressed

powder surface, bombarded by energetic Ar+ ions, resulted in a peak ejection speed

of 1.5 km/s, corresponding to U = 0.27 eV with α = 3.0. Cassidy & Johnson (2005)

suggested significant deviations from the energies found by Wiens et al. (1997), and a

reduction in yield because of further interactions with surface grains after the initial

release of the sputtered atom. However, the relative amount of high-energy sputtered

sodium was independent of the effect, so that Eq. 4.8 remains valid with regard to the

escaping population of prime consideration here. Fig. 4.5 shows the result of Wiens

et al. (1997) as the solid red line (3), in contrast to the very high-energy distribution

assumed by Wurz et al. (2010), as the dashed red line (4).

As there is clearly much disagreement regarding energy distributions and rates of

sputtering at Mercury, the model was tested for both the fast and slow distributions

proposed, and I now discuss the process in more detail. The total source rate for

atoms sputtered from the surface is a product of the ion flux reaching the surface,

the concentration of sodium in the regolith, and the effective yield of atoms per ion

collision. The effective yield varies by ion species and better constraints are still

needed. In addition, heavier ions can more easily reach the surface because of their

larger gyro-radii. Killen et al. (2004) suggested 0.19 atoms per ion for a typical mix of

solar wind particles, which I take as an upper limit. Dukes et al. (2011) showed 4 keV

He+ sputtering to have yields of 0.037 atoms/ion. While these solar alpha particles

make up only 5% of the solar wind, their contribution to sputtered sodium has been

estimated at 30% that of protons, with all other solar ion populations being negligible

(Wurz et al., 2010). Although the yield from heavy ions is much greater than protons

and alpha particles, precipitating fluxes of heavier magnetospheric ions are generally
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estimated to be 3 to 4 orders of magnitude less than direct solar wind channels via

the cusps (e.g., Delcourt et al., 2003; Benna et al., 2010; Mura et al., 2005).

The charged particle precipitation onto Mercury’s surface is likely to vary sub-

stantially. The average solar wind density more than doubles between apoherm and

periherm, from about ∼30 to ∼70 cm−3. Furthermore, the interplanetary magnetic

field (IMF) becomes less radial with distance, so that near periherm a larger surface

region is likely to be directly exposed to the solar wind via open field lines (Sarantos

et al., 2007). Flux transfer events sporadically increase the precipitation rate in the

cusps for just a few seconds (Slavin et al., 2010a). During the most intense solar wind

conditions (e.g., a dynamic pressure of 94 nPa, ∼6 times the average), the precip-

itating flux integrated over the entire planet was estimated to be as high as 3.0 ×

1026 protons s−1 (Kallio & Janhunen, 2003; Massetti et al., 2003). For purposes of

modeling my Schmidt et al. (2010) wide-field data, I assume an upper limit on the

typical precipitation rate of 5 × 1025 protons s−1 globally, which still exceeds estimates

during typical solar wind conditions (e.g., Massetti et al., 2003; Kallio & Janhunen,

2003; Mura et al., 2005) and during the first two MESSENGER flybys (Burger et al.,

2010). Combining this upper limit in particle precipitation, a Na soil concentration

equal to 0.0134 as found in the study by (Wurz et al., 2010), and a 0.19 atoms per

ion upper limit on the effective sputter yield, this forms a generous estimate of ∼1.3

× 1023 atoms s−1 globally as the maximum contribution by a sputtered source during

typical solar wind conditions.

Polar bright spots in sodium D line emission can be used to trace the location of

ion precipitation channeled by magnetospheric cusps to Mercury’s surface. Because of

the tenuous solar wind-magnetosphere interaction, the observed intensity and location

of the polar bright spots is variable (e.g., Potter & Morgan, 1990; Sprague et al.,

1997; Schleicher et al., 2004; Potter et al., 2006). Using the image-slicer instruments



98

mounted to the AEOS (Advanced Electro Optical System) telescope, polar bright

spots were resolved near ∼75◦ latitude by Baumgardner et al. (2008). Recent modeling

confirms that the bulk of the particle precipitation occurs at these latitudes during

MESSENGER M1 and M2 flybys, with a dispersion of roughly 10◦ and 50◦ FWHM in

latitude and longitude, respectively, centered about the noon meridian (Benna et al.,

2010; Burger et al., 2010). As an input to my Schmidt et al. (2012) model, a 2-D

Gaussian with these widths was therefore assumed as the typical spatial distribution

of ion precipitation.

After my Schmidt et al. (2012) study, regions of ion precipitation and the surface

concentration of Na were refined based on new information from the MESSENGER

spacecraft. MESSENGER measurements indicate an average of ∼5 × 1024 ions s−1

precipitate through the cusps, nearly 80% of which are contained in the south (Winslow

et al., 2012). In my recent simulations, impacted surface regions are approximated

using 2D Gaussians in longitude and latitude based on the Winslow et al. (2012)

results. Solar wind ions are supplied to the cusps, centered at 74.7◦ N and 64◦ S

latitudes. The impacting flux covers a Gaussian 1σ region of 4◦ latitude and 1.5 hours

longitude in the north and 6◦ latitude and 2.3 hours longitude in the south. Thus

95% of the plasma impacts over 5.2 × 105 km2 and 2 × 106 km2 in the north and

south, respectively, nearly 7% of the dayside surface. The assumed cusp locations and

sizes are based on the Winslow et al. (2012) results, which are averaged over many

MESSENGER passes. At a given point in time, such parameters are of course subject

to both seasonal and space weather drivers (e.g., Sarantos et al., 2007).

Ions precipitate at lower latitudes on the nightside compared to the cusps due

to solar wind compression of the magnetotail and the dayside magnetopause. Some

models have shown that nightside ion precipitation peaks near +35◦ latitude (e.g.,

Delcourt et al., 2003; Kallio & Janhunen, 2003; Mura et al., 2009), which maps to
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an L-shell of ∼1.6 in a centered dipolar model (an L-shell is defined here as the

maximum distance a field line extends outward in units of planetary radii). Yet,

the Baumgardner et al. (2008) observations show enhancements at somewhat higher

latitudes. Precipitation along an L-shell of 2.5 is therefore used here, which better

corresponds to the boundary between open and closed field lines in the magnetotail

(Slavin et al., 2012). In light of the magnetometer results of Anderson et al. (2011),

the magnetic equator is located at 11.5◦ N planetographic latitude. An L-shell of 2.5

thus intercepts the planet at 40◦ S and 61◦ N. To first order, precipitation along these

field lines is assumed to impact over Gaussian FWHMs of 30◦ in latitude.

4.3.4 Impact Vaporization

Enhancements in the lunar Na exosphere have been observed to correlate with

intense meteor showers (Smith et al., 1999; Wilson et al., 1999). Meteorite drivers

at Mercury may also comprise a measurable fraction of the total sources of the Na

exosphere, however the flux of impactors is not well known. Marchi et al. (2005)

predicted that the flux of large meteoroids (>13 cm diameter) may be asymmetrical

in the morning and evening hemispheres by as much as a factor of 1.5. The impacting

flux of smaller (1 mm to 1 cm) grains migrating from the main asteroid belt via

Poynting-Robertson drag is several orders of magnitude higher, estimated to produce

75% of the vaporized sodium, with the other 25% owing to impactors 1 to 10 cm in

diameter (Cremonese et al., 2005). The contribution of vapor from the impactor to the

plume can be neglected to first order, as it comprises only a small fraction of the mass

of the regolith vapor produced (Mangano et al., 2007). Unlike desorbed and sputtered

sources, vapor is assumed to be ejected approximately isotropically from the point of

impact (Killen et al., 2010a). The effect of a large impact on sodium escape rates at

Mercury is discussed in Section 5.2.4.



100

It has been suggested that a small fraction of Na produced during meteor im-

pacts may be in the form of oxides and hydroxides (Berezhnoy & Klumov, 2008).

The photolysis lifetimes of these molecules are short on Mercury compared to the

ballistic time of flight to impact the surface (Self & Plane, 2002). Atomic Na from

photo-decomposed molecules may retain an energy of the order of the molecular bond

strength, resulting in a trace but energetic (1 to 2 eV) population. This energetic pop-

ulation is ignored in models of Mercury’s exosphere to date, including my own, but is

mentioned for completeness. Excess photolysis energy depends on the vibrational and

rotational states of the molecule and the photon wavelength; division of this energy

between kinetic and potential energies in the atom is not well defined (Jhon & Dahler,

1978). As such, inclusion of the photolytic products of molecular Na is more rigorous

than other source mechanisms.

Sodium vaporized by micro-meteoroid impacts on Mercury is likely to be ther-

malized, as the gas is locally collisional in the fireball. The average temperature of

the ejecta depends on the nature of the impact. Killen et al. (2010a) suggested a

temperature of only 1000 K from the Lunar Crater Observation and Sensing Satel-

lite (LCROSS) impact plume. However, micro-meteoroids impact Mercury with more

than 10 times the velocity at which LCROSS hit the Moon (Cintala, 1992). Berezhnoy

& Klumov (2008) suggest 2500 K, Leblanc & Johnson (2010) assume 3000 K, Wurz

et al. (2010) assume 4000 K, and Burger et al. (2010) simulate 2000 and 5000 K. Both

3000 and 5000 K thermalized sources were simulated in Schmidt et al. (2012), shown

in Fig. 4.5 as the blue solid and dashed lines, respectively.

My latest work, assumes micro-meteor vaporized Na has a thermal energy of 2500

K. Killen et al. (2001) proposed a source dependence with solar range as 4.7 × 1022

× R−1.9 atoms s−1, which I increased by a factor of 1.1 to 2 to reflect recent estimates

of the Na surface concentration (Evans et al., 2013). Meteor flux is presumed to have
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north-south symmetry over Mercury’s surface, although asymmetries in the trailing

and leading hemispheres have been proposed (e.g., Marchi et al., 2005).

4.3.5 Conclusion

An up to date model of the Mercury exosphere should be frequently revised

in the presence of in situ measurements. For example, the inclusion of non-uniform

surface concentrations based on Evans et al. (2013) improves the model’s capability to

simulate the bound exosphere. Modifications also stem from refinements of estimated

parameters based on older literature. In my initial Schmidt et al. (2012) study, the

derived source rates are not limited by the finite supply of Na atoms to the surface.

Upon adopting new energy distributions in Fig. 4.6, I have since added a limit on

sources based on the diffusion limited supply rate Killen et al. (2004). While many

important parameters still remain poorly constrained at Mercury, modeling the most

plausible cases for each can still advance the field.
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Chapter 5

Model-Data Comparisons

5.1 Introduction

In the following section, 5.2, the Monte Carlo model is applied to the first two

years of wide-field coronagraph data. I determine the seasonal atmospheric escape

for each exospheric source applying the energies distributions shown in Fig. 4.5. I

then explore the detection limits on variability in the escaping atmosphere due to

space weather events and large meteor impacts. Following this study, the model’s

source characteristics are refined based on my own fits to the Yakshinskiy & Madey

(2005) data and new information from the MESSENGER spacecraft, as discussed in

Section 4.3. The refined Monte Carlo model is used to simulate the observations of

north-south asymmetries in the tail by Potter & Killen (2008) in Section 5.3, using the

constraint of simultaneous measurements of the Na exosphere above Mercury’s disk

(Baumgardner et al., 2008).

5.2 Modeling the Wide-field Coronagraph Data: New Con-

straints on Exospheric Processes

5.2.1 Constraints on Source Mechanisms

Using the characteristics modeled for meteoritic, photo-desorbed and sputtered

source processes, each is capable of ejecting sodium that escapes the planet’s gravity

into the tail. In this section, the release rate of each source mechanism into the
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exosphere is adjusted so that escaping sodium produces enough D line emission to

match the peak brightness found in the tail. The emission falloff with distance from

the planet is accurately reproduced by time-integrated ionization and acceleration

effects in the model, so that once the best fit value is obtained, a peak brightness

match at all distances from the planet is inherent. To gauge the variability in the data

set, source rates for each surface ejection mechanism are fit to each observation. I

then discuss the viability of each source rate so determined, the required variability in

rates over the data set, and apply empirical and theoretical constraints. Section 5.2.2.

investigates the tail width and the shape of the cross-tail profile produced by the six

different energy distributions (shown in Fig. 4.5) commonly applied at Mercury.

Global source rates in the range of ∼1023 to ∼1025 atoms s−1 are able to match

all observations seen in my Schmidt et al. (2010) study. In Figure 5.1, the first high-

resolution wide-field coronagraph data of 18 May 2008 (panel A) is chosen as the test

case for comparison with several simulations using a single source process as the model

input. The 6 arcminute occulting mask in panel A blocks Mercury’s bright disk, and

the plate scale of the wide-field coronagraph has been matched in the model for conve-

nience of comparisons. Panel B shows a 3000 K spatially isotropic Maxwellian source

representing a micro-meteoroid vaporization rate of 2.7 × 1024 atoms s−1. Nearly

half this value, a 5000 K source rate of 1.3 × 1024 atoms s−1, also matched the peak

brightness but is omitted from the figure as the result looks quite similar to panel B.

Total source rates for both slow and fast ion sputtering distributions (curves (3) and

(4) in Fig. 4.5) are restricted to 1.3 × 1023 atoms s−1 totally, as shown in panels C

and D, respectively, and at least a factor of 4 increase from these values is needed to

match the observation. Panel E is a slow PSD source at 1500 K, limited to 1.0 × 1025

atoms s−1. The best match for fast PSD requires 3.0 × 1024 atoms s−1, as shown in

panel F.
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Figure 5.1 A comparison of recorded brightness on UT 18 May 2008 with simulations
using a single source process (panel A). A 3000 K spatially isotropic Maxwellian source
representing micrometeoroid vaporization rate of 2.7 × 1024 atoms s−1 (panel B). The
sputtered distribution of Eq. 4.8 after Wiens et al. (1997), ejected from cusp regions
at ±70◦ latitude (panel C). Source rates are limited to 1.3 × 1023 atoms s−1. Same as
C but with a sputtered distribution used in the study by Wurz et al. (2010) (panel D).
A PSD source at 1500 K limited to 1 × 1025 atoms s−1 (panel E). A fast PSD source
distribution corresponding to the dashed green curve (6) in Fig. 4.5 (panel F).
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Three of the six sources I simulate require a release rate that exceeds realistic

limitations, suggesting these may be dismissed as the dominant source of high-energy

sodium. On the basis of combined estimates of ion-precipitation rates, Na soil con-

centration, and the effective yield per ion (Killen et al., 2007; Wurz et al., 2010; Killen

et al., 2004), an upper limit of 1.3 × 1024 atoms s−1 is placed on the global source rate

sputtered by ions. Source rates required to match the tail brightness for both energy

distributions of solar wind sputtering exceed this upper limit. This effectively elimi-

nates distributions (3) and (4) in Figure 4.5 as the dominant source of Na escape, as

neither is an adequate source for either sputtered energy distribution to produce the

observed escape. In addition to the sputtered sources, the PSD source rate at 1500

K, needed to match the tail brightness, exceeds an observational constraint. Upon re-

peated measurements by Potter et al. (2007), the average dayside column abundance

found (in which they applied the requisite phase angle and scattering corrections) is

approximately 5 × 1010 atoms cm2 for the orbital phase of the 18 May 2008 corona-

graph data. Matching this, abundance limits slow PSD source rates to no more than

∼1 × 1025 atoms/s. This source rate would account for only ∼35% of the observed tail

brightness, effectively eliminating distribution (5) in Fig. 4.5 as the dominant source

of Na escape, although it should be noted that the modeled column density depends

heavily on the sticking characteristics. Required upper limits are thus simulated in

panels C, D, and E of Fig. 5.1.

Meteoritic and fast PSD source rates reproducing the measured brightness in

panel A do not exceed observational or firm theoretical constraints. For fast PSD,

a ∼1025 atoms s−1 limit is significantly higher than the rates needed to match all my

wide-field observations, so that only slow PSD is constrained by the Potter et al.

(2007) dayside abundance estimates. In all cases, the global supply of sodium to the

surface from above (mostly reabsorbed from the exosphere) and from below (using
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the diffusion limit proposed by Killen et al. (2004) is sufficient to allow the considered

desorption rates without depleting the regolith. Impact vaporization and sputtered

source rates are also not limited by the average dayside abundance. Simulations of

these more energetic mechanisms reproduce the gravitational escape rates, while stay-

ing well below the expected dayside column abundance. The source rate of vaporized

sodium caused by micro-meteoroids was not constrained, as the impacting flux at

Mercury is highly model dependent (e.g., Borin et al., 2010).

Upper limits for solar wind sputtered sources are still at least a factor of four too

low to account for the observed brightness in the tail. In order to meet the requisite

escape flux observed, a 1500 K population ejected by PSD would exceed the disk-

averaged brightness measurements by a factor of 2. PSD still may be the dominant

source of escaping sodium, however, if the distribution of initial ejection velocities has

a tail at high energies. Gravitational escape of a thermalized, globally distributed

source attributed to impact vapor doubled from 3000 to 5000 K. The gravitational

escape because of impact vaporization at 3000 K was comparable to that of PSD if a

high-energy tail in the distribution of ejection velocities is extrapolated.

Table 5.1 quantifies the escape rates required for the observed brightness during

the 18 May 2008 wide-field observation and compares upper limits on the globally

integrated flux for several source types to the flux required to match the escape derived

with my 1-dimensional model, as was shown in Fig. 3.10. The first column indicates

the source type and energy distribution assigned to the atoms upon initial release

in the model. The constraints on release rates applied in Fig. 5.1 are given in the

second column. Notice that for both sputtered sources simulated, these imposed upper

limits are at most ∼25% of that needed to reproduce the peak brightness observed in

the tail, given in the third column. The last column is the percent deviation in the

source needed to match both the 18 May 2008 escape rates and the recorded maximum
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Table 5.1. Global Source Rates of Sodium Required to Simulate Observed Escape

Mechanism Upper Limit Source Rate Matching Required Increase From
(See Distribution Source Rate Tail Brightness on 18 18 May 2008 to 12 Nov

in Fig. 4.5) (atoms/s) May 2008 (atoms/s) 2007 Measurements (%)

MIV: (1) Slow Unconstrained 2.72 × 1024 71
(2) Fast Unconstrained 1.32 × 1024 109
IS: (3) Slow 1.3 × 1023a 9.60 × 1023 156
(4) Fast 1.3 × 1023a 5.14 × 1023 170
PSD: (5) Slow 9.87 × 1024b 2.30 × 1025 56
(6) Fast 1.02 × 1025b 2.96 × 1024 146

aExceeds total expected source flux, given upper limits on surface concentration, par-
ticle precipitation, and yield.

bSimulation result exceeds the average dayside abundance determined by Potter et al.
(2007).

escape on 12 November 2007, used as a proxy for the variability required to match the

escape rates over the first two years of the wide-field data set. An inverse square law

dependence would account for a 45% increase in the source between these two dates,

and an uncertainty of ∼20% is inherent in the measurements owing to calibration and

terrestrial Na background noise.

5.2.2 Constraints on Energetic Processes

The cross-tail D-line brightness profile is shown in Figure 5.2 for wide-field images

taken on UT 18 May 2008 at various distances from the planet. The point spread

function (2.6 pixels FWHM), as determined from background stars in the coronagraph

field, has been deconvolved from the tail width assuming both the cross-tail and PSF

profiles are Gaussian. The resulting estimate of the physical width of the distant

sodium tail is shown by the dotted black line.
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Figure 5.2 At four chosen distances, a comparison of the cross-tail brightness profiles
recorded on UT 18 May 2008 (Black Histogram) with several simulated source
distributions. Note the change in brightness scale (left axis) and width scale (bottom
axis) with distance. Black: A Gaussian fit to the data. Dashed Black: A Gaussian
fit to the data after removal of the 2.6 ± 0.2 pixel FWHM instrumental point spread
function. Blue: A 5000 K globally isotropic source at 1.3 × 1024 atoms s−1. Green:
A high-energy PSD source of 2.96 × 1024 atoms s−1 with an energy cutoff of 10 eV as
used in the studies by Johnson et al. (2002) and Wurz et al. (2010). Dashed Orange:
A sputtered source limited to 1.3 × 1023 atoms s−1.
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Considerable differences in the energy distributions of Figure 4.5 result in only

subtle differences in the simulated tail widths, especially for low α. If the thermal

accommodation, α, is as high as 0.62 as Hunten et al. (1988) proposed, then the tail

width of simulations for all Maxwellian sources is narrower than that observed. The

dashed blue profile in Figure 5.2 is that of a globally isotropic source thermalized at

5000 K, characteristic of impacting micro-meteors. The contribution of high-energy

sputtered sources is unable to account for the observed width, as estimates of the

total yield are far too small to match observed brightness. The orange profile shows

the maximum allowed contribution of a sputtered source (1.3 × 1023), with an energy

distribution of Eq. 4.8 as fit by Wiens et al. (1997). The enhanced brightness at

the polar lobes from sodium ejected at ±70◦ latitude cusp regions is visible in the

simulations, even at distances greater than 50 planetary radii. The very high-energy

distribution for sputtered atoms used in the studies by Wurz et al. (2010) and Lammer

et al. (2003) produces a profile that well exceeds the observed width if sputtering is the

dominant source of escape. At the ∼3 RM down-tail range observed by Potter & Killen

(2008) during a similar orbital phase, desorbed and vaporized sources approximately

match their widths of ∼10,000 km FWHM, while the tail width from both sputtered

sources is∼15,000 km. The green dashed line shows the result of an energy distribution

similar to that used by Wurz et al. (2010) for PSD. I find that a ∼10 eV upper limit

to the energy of a desorbed source best matches the cross-tail width in the wide-field

data, while these authors chose 20 eV. At this orbital phase, the escape flux using my

modification is nearly 15% less than that of a 20 eV cutoff.

5.2.3 Seasonal Effects

Seasonal Effects on the Observable Na Tail

Mercury’s Na atmosphere exhibits seasonal variability in brightness and column

density (Leblanc & Johnson, 2010). Unlike the familiar seasons driven by Earth’s
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Figure 5.3 (left) Comparison of simulation and (right) data for a tail ”non-detection”
case. The simulation shows a steady state global release of 2.7 × 1024 atoms s−1 at
3000 K. Noise levels for the UT 6 July 2008 measurement are high because of D line
contamination in the terrestrial mesosphere during this observation, taken at a low
elevation angle.

tilted spin axis, seasons in Mercury’s atmosphere result from the planet’s rotational

motion, and its distance and velocity relative to the Sun. The escaping portion of

the atmosphere varies with orbital longitude, as solar radiation pressure is a func-

tion of the Sun’s distance and relative velocity. To calculate the escaping fraction of

Mercury’s sodium atmosphere, the model’s source is turned off and particle motions

are integrated over several photo-ionization lifetimes (at least 1 day). The population

remaining aloft typically moves many hundreds of planetary radii in this time, where

radiative forces prevail over gravity by orders of magnitude. Such particles are labeled
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as escaping if their distance from the planet then exceeds a set boundary, chosen to

be 15 RM .

The escaping Na from each energy distribution population varies uniquely as

the threshold for escape changes with orbital motion, and so wide-field observations of

sodium escape during times of lesser radiation pressure can also be used to characterize

high-energy tails in the source population. My observations during the M1 MESSEN-

GER flyby (14 January 2008), as well as on 6 July 2008, showed no sodium tail at

120 and 90 RM , respectively. Both observations were made with Mercury in the same

portion of its orbit, at true anomaly angles of 287◦ and 275◦, respectively. During this

orbital phase, atoms traveling anti-sunward are Doppler shifted into the Fraunhofer

D line absorption well, where scattering is only 5% of the continuum. As such, escape

rates are high because of strong initial radiation pressure. However, most atoms are

photo-ionized close to the planet before a bright distant tail can form. Fig. 5.3 illus-

trates this effect, again showing a steady state global release of 2.7 × 1024 atoms s−1

at 3000 K, identical to panel B of Figure 5.1, except for the case of the UT 6 July

2008 data at a true anomaly of 275◦. Note the change of axis scale in comparison to

Fig. 5.1. At down-tail distances of ∼175 RM , the remaining neutral sodium produces

a small, isolated feature because of increased scattering as the gas emerges from the

absorption well. The feature’s 170 R peak simulated brightness is comparable to the

∼125 R standard deviation in the background noise during this observation. After

subtraction of the bright terrestrial background, noise levels in the data are high and

residual artifacts persist, especially surrounding the coronagraph mask. Subsequent

observations at higher-elevation angles are expected to better quantify this feature.

Yet I note that the brightness pattern observed in the anti-sunward direction has

(for an observation previously considered a non-detection of the tail) a possible local
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maximum at the distance range predicted by our model, and this feature should be

apparent under more favorable observing conditions.

Seasonal Control Over Na Escape Rates

As the radiation pressure affecting the sodium exosphere changes with Mercury’s

eccentric orbital motion, the escape of the bound atmosphere varies differently for each

source process, depending on its velocity distribution and source region on the surface.

For a constant source, the column density averaged over the dayside disk was found

to vary with radiation pressure. A 1500 K PSD source displayed a column density

reduction by ∼1/3 from minimum to maximum radiation pressure, and densities by

meteoritic sources were reduced by as much as one half. Table 5.2 shows the fraction

of particles escaping as a function of orbital phase for each source described in Figure

4.5. This escaping percentage is simply the number of particles that escape divided

by total the number of particles released into the atmosphere. Those particles further

than 15 RM from the planet, after 24 hours of integration during which particle release

is turned off, are considered to have escaped. Calculated radiation acceleration is ∼7%

smaller than given in my previous study (Schmidt et al., 2010) because of an improved

solar flux model. A thermal accommodation coefficient of 0.62 was used universally

for these estimates (Hunten et al., 1988). In each case, however, the smooth surface

bouncing conditions described in Section 4.2.2 increased escape rates by an average of

only 2%, compared with model runs where all atoms stuck to the surface upon impact,

and less still if the porosity of the regolith is accounted for (Cassidy & Johnson, 2005).

There are several items to note in Table 5.2. Near apoherm, escape of Maxwellian

distributions becomes negligible, and associated processes may allow sodium to replen-

ish the upper surface layers during much of the Mercury year. High-energy sources,

especially ion sputtering, naturally exhibit very little variability in escape over the

Mercury year. Less energetic distributions, notably 1500 K PSD and 3000 K impact
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vaporization, exhibit the largest degree of seasonal variability in escape, and these,

though still somewhat less, better approximate the variation seen in the Schmidt

et al. (2010) data set, in which escape fluxes spanned 4.6 to 12.6 × 1023 atoms s−1.

Also note that, for constant supply, escape rates can significantly differ between orbital

positions having the same radiation pressure but opposite true anomaly. This effect

arises from the particle’s motion being accelerated either into or out of the Fraunhofer

D line absorption well, depending on the sign of Mercury’s heliocentric velocity.

Creating Table 5.2 inherently required a specified spatial distribution of surface

processes. Ejection rates were chosen to vary only with solar zenith angle for PSD

(photon-limited), and sputtering occurs with north-south symmetry only in regions

near ±70◦ latitudes. To examine localized enhancements in PSD and space weather

effects on the footprint of the cusp, I also varied the ejection locations on Mercury’s

surface. The escaping fraction of desorbed and ion-sputtered sodium was found to

vary by ejection location on the planet’s surface, most substantially during maximum

radiation pressure. Compared with the subsolar point at this time, fast PSD escape

rates were 92% and 150% higher where enhancements have been proposed, near ±70◦

latitudes, and at the dawn terminator, respectively (e.g., Mura et al., 2009). Ap-

proximately 10% of slow PSD atoms escape from these regions, while escape at the

sub-solar region is negligible. Escape of sputtered sodium is found to decrease by 37%

and 10%, for slow and fast sputtering, respectively, if the cusp footprint is moved all

the way to the equator during extreme loading of the magnetosphere (Slavin et al.,

2010b).

5.2.4 Constraints on Potential Short-Term Source Variability

Short-term variability may be visible in the ∼15 hour time history captured in

the observed tail length using wide-field imaging techniques. Source rates of both sput-

tered sodium and impact vaporization are expected to vary on short timescales. Both
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processes have very different morphologies because of the regions on Mercury’s surface

where each is likely to occur and the duration of the variability in each source. I now

investigate two possible scenarios: (1) an extreme space weather event in which the

magnetopause is pushed to Mercury’s surface and (2) a large meteor impact centered

on Mercury’s leading hemisphere.

Detection of Space Weather Events

As I have determined the relative contribution of sputtered sodium to be low,

transient events must be quite intense to produce any observable increase in the tail

brightness. Even if a fast distribution of energies is assumed, where nearly all sput-

tered particles escape the planet, generous upper limits on typical supply rates are

shown here to be only ∼25% of those needed to match the observed escape. In ad-

dition, the cusp regions can shift equatorward (Slavin et al., 2010b), where radiation

pressure pushes more atoms to bounce off the dayside surface, and thermal accommo-

dation decreases the rate of sodium escape. Although induction currents will oppose

compression of the magnetosphere, it is not impossible that the magnetopause may

occasionally be forced down to the planet’s surface (Russell et al., 1988; Fujimoto

et al., 2007).

In the following example, I consider a very intense sputtering event: the extreme

condition in which the whole dayside magnetosphere is exposed to the solar wind.

An average source rate of 3.5 × 106 atoms s−1 cm2 is sputtered into the exosphere,

with ejection locations distributed by solar zenith angle. This represents an order of

magnitude increase in the sputtering rate from my estimated upper limit, making the

transient supply of sodium sputtered into the exosphere 1.3 × 1024 atoms s−1. The

ejection energy distribution of Wiens et al. (1997) is applied to the sputtered atoms.

A background source is chosen to be a meteoritic Na vapor at 3000 K, fixed to 1.2 ×

1024 atoms s−1, and a fast PSD source at 1.1 × 1024 atoms s−1. The pulse in sputtering
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is input as a step function 1 hour in width, and Figure 5.4 shows how the tail might

look 6 hours after the event onset. While such an event might be unlikely, such a pulse

would approximately double the sodium brightness at 100 RM , making it observable

via wide-field imaging techniques.

Figure 5.4 The result of an extreme sputtering event 1 hour in duration, after 5 hours
of acceleration down the tail. An order of magnitude increase from the upper limit
for typical solar wind conditions results in double the brightness of the background
escape because of PSD and meteoroid impact vaporization.

Detection of Large Meteor Impacts

Mangano et al. (2007) showed that sodium produced by large impactors would

be difficult to detect above the dayside background emission by the PHEBUS and

SERENA instruments onboard the BepiColombo orbiter. If the exosphere is predom-

inantly desorbed, the ejecta from a large impact are more energetic than background
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sources. The plume of sodium D-line emission may be more easily visible further

down-tail as more of it escapes relative to the lesser energetic background sources. To

investigate this possibility, I determine the ejection rate from a point source needed

to vaporize a plume with peak brightness at least double that of the background at

100 RM down-tail, where signal to noise is optimum with wide-field coronagraph tech-

niques. The nature and frequency of impacts vaporizing enough sodium to meet the

detection limit is discussed in this section.

Again, choosing the 18 May 2008 observation as a test case, the detection of a

large meteor impact in the tail becomes possible when approximately 1.6 × 1027 Na

atoms (60 kg) or more are vaporized in the fireball. Figure 5.5 shows a 5 × 1027

atom plume, which is comparable to estimates of the total content of the exosphere

at this orbital phase (Leblanc & Johnson, 2003). The simulation assumes that a 5000

K velocity distribution is ejected from a point centered in the leading hemisphere

near the dawn terminator. Models of the LCROSS lunar impact have shown the Na

plume probably expanded isotropically (Killen et al., 2010a), as I will assume here.

A simple dependence on the cosine of the surface normal, as used for desorption and

sputtering (Leblanc & Johnson, 2003), would increase the escape by 10 to 15 percent.

To portray such a dynamical scenario, note that each panel in Figure 5.5 has a different

spatial and brightness scale. A background source to the exosphere again consists of

a micrometeoritic source of Na vapor at 3000 K, fixed at 1.2 × 1024 atoms s−1, a fast

PSD source at 1.1 × 1024 atoms s−1, now with a fast sputtered source fixed at 5.0 ×

1022 atoms s−1. The panels in Figure 5.5 show model results of the plume 5 min, 1

hour, 2 hours, and 6 hours after impact.

Models suggest that large meteor impacts may occur with slightly greater fre-

quency on Mercury’s morning hemisphere, i.e., the hemisphere facing the upwind

direction (Marchi et al., 2005). For impact sites centered near dawn as in Figure 5.5,
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Figure 5.5 Propagation of a 200 kg sodium plume lofted from the regolith by a very
large impact: (A) 5 min after impact, note the result is given as column abundance,
as the D2 line is optically thick; B) 1 hour after impact; (C) 2 hours after impact; and
(D) 6 hours after impact.
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much of the plume is guided across the nightside by gravity before re-emerging from

the planet’s shadow and making its way down-tail. During the transit to the nightside,

energetic portions of the plume experience a longer time of flight and hence more radi-

ation pressure while sunlit, effectively dispersing the vapor cloud over a large volume.

This is the cause of the extended vapor cloud with a bifurcation seen in Figure 5.5

panel B, which grows to span more than 100 RM in length 6 hours after the impact.

The plume from an impact occurring near the sub-solar point, while still diffuse, re-

mains more cohesive in structure down-tail. However, radiation pressure forces more

of the ejecta to reimpact the dayside surface. For α = 0.62 (Hunten et al., 1988),

only ∼14% of the plume escapes the sub-solar point, compared with ∼32% near the

terminator. In addition, a plume from a dayside-centered impact point makes a longer

anti-sunward trip, allowing greater photoionization and thus canceling any gains to-

ward potential visibility to wide-field observing methods.

My simulations suggest that only very large meteoroids (>30 cm radius) would be

detectable in observations of the distant sodium tail, depending on the location of the

impact on the surface. At 35 km s−1, such impacts can vaporize nearly 60 kg of sodium

from the surface regolith, if I extrapolate the equations of Cintala (1992) for a diabase

type impactor, a surface temperature of 400 K, and a surface concentration of 0.0134

(Wurz et al., 2010). Transient processes injecting atoms into the Na tail must occur

on very short timescales in order to produce distinct heterogeneity in the brightness

profile. For this reason, short-term, hourly timescale pulses in ion-precipitation rates

may be less likely to produce an observable brightness variation down-tail than the

instantaneously released plumes that are created by occasional large meteoroids. Only

for the extreme precipitation (∼1027 ions/s) during solar energetic particle events does

the escape rate of sputtered sodium become comparable to the rate of escape that I

derive (Leblanc et al., 2003). Short-term increases in particle precipitation can cause



120

subsequent increases in Na desorption, as chemical alteration of the regolith may act

as a catalyst for desorption processes, which are limited by diffusion in the soil (Potter,

1995; Killen et al., 2004). I am therefore not able to rule out short-term variations in

the escaping exosphere driven by ion precipitation.

Observations showing localized hot spots of sodium D line emission, such as

the near-disk flanks in the tail observation by Potter et al. (2002) and the polar

lobes in the high-resolution adaptive optics image used in the study by Baumgardner

et al. (2008), could not be replicated with the upper limit source rates for particle

sputtering. Localized enhancements in desorption from surface alteration caused by

particle precipitation may therefore be responsible (e.g., Potter, 1995). Also, the

dawn-side sodium enhancements observed by Sprague (1992) and Schleicher et al.

(2004) are difficult to explain without a more advanced surface composition model in

which sodium preferentially condenses on the cold nightside. Accurately simulating

such features involves a more in-depth simulation of the systematic redistribution of

sodium over the planet and chemical alteration of the surface by charged particle

bombardment, in which both chemically and physically absorbed Na is considered

(Hunten et al., 1988). While such an effort is not pertinent to characterizing the

sodium escape in this study, a surface composition and chemical alteration model is

considered for future studies.

5.3 Modeling of Simultaneous Ground-Based Data

Ground-based observations and MESSENGER’s first flyby show persistent asym-

metries in Mercury’s neutral sodium tail, with the brightest emission often seen in the

northern lobe (Potter & Killen, 2008; Baumgardner et al., 2008; McClintock et al.,

2008). This feature may be associated with the recent finding that the magnetic dipole

moment is offset from the planet’s center by 0.2 RM to the north, while approximately
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aligned with the spin axis (Anderson et al., 2011). Such a configuration produces an

asymmetry in the magnetospheric cusp whereby more plasma has direct access to the

planet’s southern hemisphere than the north (Winslow et al., 2012). In this section, I

examine the effects of asymmetric precipitation on the sodium tail by simulating the

near simultaneous observations of Potter & Killen (2008) and (Baumgardner et al.,

2008) taken on 8 June 2006 and 11 June 2006.

Observationally, a clear distinction can be made between asymmetric source types

by examining the neutral sodium tail escaping Mercury. Desorbed atoms leave the

surface at low energies so that gravity directs their trajectories back to the surface,

and very few escape. Ballistic trajectories of sputtered atoms experience far less

gravitational influence and largely escape into the tail during maximum radiation

pressure. Smyth & Marconi (1995) demonstrated very different migration effects in

the tail depending on the energy imparted to Na atoms. In particular, these authors

showed that atoms accelerated by radiation pressure to just above the gravitational

escape threshold will migrate to the opposite hemisphere before escaping down-tail

(see their Figure 7). The practical implications of these unique trajectories have only

recently become pertinent, as sodium sources are now expected to be asymmetric given

the magnetic field offset. Measurements of Mercury’s sodium escape hence provide

valuable constraints for characterizing the sources and physical processes sustaining

the exosphere and their energies.

Studies concerning the spatial distribution of sodium sources at Mercury have a

long history (e.g., Sprague, 1992; Potter et al., 2006). In this section, regional sources

of sodium are examined, as prompted by the recently observed asymmetries in the

escaping tail (Potter & Killen, 2008; Baumgardner et al., 2008; McClintock et al.,

2008) and offset in the magnetic field (Anderson et al., 2011). Modeled emissions

are compared with the tail measurements of Potter & Killen (2008), using exospheric
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sources coupled to estimates of particle precipitation in the magnetosphere. Observa-

tions one and three nights prior by Baumgardner et al. (2008) confirm the persistence

of the northern tail enhancement in the Potter & Killen (2008) dataset, and depict

the exospheric structure above Mercury’s disk at this time.

This section uses the Monte Carlo sodium exosphere model to investigate if ion

sputtering and PSD could produce north-south asymmetries in the Na tail by applying

the latest information from the MESSENGER spacecraft. Precipitation rates to the

surface and the location of the magnetic cusp footprints are input based on an average

of the magnetic pressure deficit measured with the on-board magnetometer (Winslow

et al., 2012). The abundance, fNa, is assumed to vary with the maximum surface

temperature as 0.056×T−0.345max , based on MESSENGER GRS data (Evans et al., 2012,

2013). The ejection rates of all exosphere sources are weighted by this concentration.

Surface temperatures are calculated as described in Section 4.2.2 resulting in a small

dawn-dusk asymmetry in the surface interactions due to the thermal inertia of the

lithosphere. ). At any given latitude, the variation in fNa is less than ∼10%. Ex-

ospheric Na re-impacting the surface has a sticking probability that is temperature

dependent, approaching unity at 100K and 0.1 at the sub-solar point based on a fit

to the Yakshinskiy & Madey (2005) measurements. The thermal accommodation of

atoms bouncing off the surface is treated as a free parameter.

5.3.1 Constraints on North-South Asymmetries

All sources show north-south migration for the majority of the particles escaping.

Figure 5.6 gives results for several scenarios that relate to the asymmetries Potter &

Killen (2008) observed in the sodium tail. Panel A contains their observations made

on UT 12 June 2006. Panels B-D display results of the exosphere model in which

source rates are scaled to match the peak observed brightness of 130 kR at 10 arcsec

down-tail. Each was convolved with a 2D Gaussian kernel of 1.9 arcseconds FWHM
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to compensate for the atmospheric seeing estimated by Potter & Killen (2008). An

escape rate of ∼6 × 1023 Na atoms s−1 is determined for this measurement, in fair

agreement with both the 4.9 ± 1.1 × 1023 atoms s−1 quoted by Potter & Killen (2008)

and the wide-field observations at this true anomaly angle by Schmidt et al. (2010).

Simulated cross-tail profiles in panel B-D include PSD, micro-meteor impact

vaporization and sputtering as source types, each with a different mixture. The dashed

line in panel B shows results of sputtered sources at the average locations of the

cusp footprints that are scaled to 4.1 × 1024 atoms s−1. In addition, nominal rates

for photon-limited PSD and meteor impacts, 2.4 × 1025 atoms s−1 and 1.2 × 1023

atoms s−1, respectively, are applied as described in the previous section. However,

an influx of 5 × 1024 Na ions s−1 (Winslow et al., 2012) precipitating onto a .8%

Na surface concentration (Evans et al., 2012) with a 0.19 atom per ion yield (Killen

et al., 2004), predict a nominal sputtered Na source of only 7.6 × 1021 Na atoms

s−1. Precipitation rates of 3 × 1026 Na ions s−1 have been proposed as an upper

limit (Kallio & Janhunen, 2003) and could compensate for some of this deficit. If

the cusp footprints were to shift 30◦ equator-ward from the average, which can occur

during substorm-like events (Slavin et al., 2010a), the solid curve of Panel B would

result, given a 1:3 north-south precipitation ratio. Even in this extreme case, the

ion impact rate matching the peak of Panel A remains nearly an order of magnitude

higher than the upper limit. Moreover, both profiles in Panel B are distinctly wider

than the observations, a consequence of high ejection energies. These considerations

suggest that the sputtered contribution to the Na escape flux is relatively small, and

an alternative mechanism is likely to be responsible.

Narrower tail widths appear if ion-enhanced PSD is considered, shown in Panel

C. Nominal backgrounds are assumed for sputtering and micro-meteor vaporization

sources, while diffusion-limited PSD is scaled to the peak brightness. Cusp positions
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Figure 5.6 North-south cross-sections in Mercury’s tail. (A) Observed brightness at
4 down-tail distances by Potter & Killen (2008), note the date represents local time.
(B) Results from asymmetrically sputtered sources at the cusps. Dashed lines result
from high latitude ejection, while solid lines result from ejection at mid latitudes. (C)
Results of photo-desorption enhanced at the average cusp positions. Dashed lines
result from lunar-type desorption, while solid lines result from SiO2 (cf. Figure 4.6).
Required rates exceed the diffusion-limited PSD rate. (D) Results in which meteorite
vaporization rates are scaled. The dashed line results from ∼107 atoms cm−2 s−1. The
solid line results from 4 × 107 atoms cm−2 s−1 in combination with PSD enhancements
at the cusps and near dawn.
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based on (Winslow et al., 2012) are invoked and a κ of 9 enhancement due to increased

diffusion is shown. The dashed line results from a lunar-type energy distribution and

the solid line from a SiO2 energy distribution, which better agrees with the brightness

down-tail. Lower latitude cusps yield a more tapered cross-tail profile, nearly 3 arc-

seconds decrease in FWHM for the black contour if the cusp footprints were to shift

30◦ equator-ward from the average. Though escape rates are lower, isotropic ejection

angles better reproduce the tail width compared to ejection in which the direction is

weighted by the cosine of the angle from the surface normal (e.g., Leblanc & Johnson,

2003). Escape rates are a steep function of the thermal accommodation that occurs

when atoms bounce off the surface, parameterized as 0.2 in Panel C. For a thermal

accommodation ≥0.2, the emission falloff with distance approaches that in Panel A,

but less than 1% of Na atoms escape given either PSD energy distribution in Figure 4.6.

If elastic rebounds are simulated (thermal accommodation = 0), escape follows many

bounces and reaches ∼ 6 − 8% of the total source. In this case, sub-solar desorption

is ∼107 atoms cm−2 s−1, consistent with the diffusion limited supply proposed by

Killen et al. (2004). The emission falloff as a function of distance down-tail is poorly

reproduced, however, by a thermal accommodation ≤ 0.2. A thermal accommodation

of ∼0.2 and source rates that exceed the diffusion-limited PSD flux at the sub-solar

point are required to fit these tail measurements. To reconcile the measurements with

the diffusion-limited flux, one must assume higher impact vaporization rates.

The dashed line in Figure 5.6 Panel D shows the result of a 15x increase in

micro-meteor vapor. Such intense meteoritic flux is consistent with recent estimates

(e.g., Borin et al., 2010), and the width of the tail at distance is better reproduced

compared to localized PSD enhancements at the cusp footprints. Yet, such high impact

production rates are not consistent with this dataset, since adding them to nominal
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values for mid-latitude sputtering and PSD yield a negligible north-south asymmetry,

even with a κ of 9.

The solid line in Panel D results from a combination of micro-meteor and ion-

enhanced PSD sources, with sputtered contributions included though insignificant.

In this case, micro-meteors vaporize an average of 4 x 106 atoms cm−2 s−1 into the

exosphere, which is consistent with the meteoritic escape rate found by Mouawad

et al. (2011), taking into account the energies assumed. Ion-enhancement of PSD is

parameterized using a κ of 9, and a sub-solar point rate of ∼107 atoms cm−2 s−1. PSD

in excess of these values results in excess emission in the wings of the cross-tail profile,

as seen in Panel C. Additionally, simulated photo-desorption is enhanced just after

dawn, an effect which will now be discussed in detail.

Figure 5.7 Adapted from Baumgardner et al. (2008). A resolved image of the Na
exosphere over Mercury’s disk taken with the image slicing spectrograph and the
AEOS (Advanced Electro Optical System) telescope on 8 June 2008. This image was
taken just 3 nights prior to the spectrograph slices in the tail by Potter & Killen
(2008), which are modeled in Fig. 5.6.

Near simultaneous measurements of structure in both the bound and escaping

atmosphere provide important constraints on model parameters. Baumgardner et al.
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(2008) made high resolution measurements of sodium above Mercury’s disk three

nights prior to the tail observations of Potter & Killen (2008), shown here in Panel A.

Utilizing adaptive optics, these disk-resolved observations show emission concentrated

at mid to high latitudes, consistent with the average cusp footprints (Winslow et al.,

2012), and large ion enhancements in PSD (κ ≈ 9). For reference, Baumgardner et al.

(2008) Figure 1 (Panel A) is reproduced here in Fig. 5.7. The D-line brightness over

dawn thru mid-morning regions was ∼4-5 MR, and ≤1 MR at the sub-solar point,

indicating a substantial increase in the morning exosphere given the ∼80◦ phase angle.

The Baumgardner et al. (2008) measurement is well reproduced by photo-desorption

rates that exponentially decay from dawn by 1/e in one Earth week, or approximately

one hour local time at the equator. Exospheric sodium adsorbed to the cold nightside

surface is likely to bond ionically with binding energies similar to native Na (Madey

et al., 1998). The depletion of this population is a plausible cause for the observed

dawn-side enhancement.

MESSENGER’s Fast Imaging Plasma Spectrometer (FIPS) has detected a sub-

stantial presence of Na+ during nightside equatorial crossings (Zurbuchen et al., 2011)

which are expected to precipitate at mid-latitudes (Delcourt et al., 2003). To simu-

late the effect of nightside precipitation on subsequent dawn-side PSD, 2.3 × 1025 Na

atoms s−1 are released at mid-latitudes near dawn, 61◦N and 40◦S, corresponding to

footprints of a dipolar L shell of 2.5. For an isotropic pitch angle distribution, ion

precipitation is ∼2.8 times greater in the southern hemisphere, where the loss cone is

significantly larger at the surface intersect than in the north. Given that the gyro-radii

of nightside ion impactors is several hundred km (Zurbuchen et al., 2011), the affected

regions are assumed to spread over a wide range of latitudes; ∼30◦ to first order is

consistent with Baumgardner et al. (2008). Walsh et al. (2013) demonstrated that

magnetospheric ions can impact over lower latitudes with 2.4 times greater precipita-
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tion in the south than the north. While high latitudes produced excess brightness in

the wings of the tail, adopting their locations as an input yielded profiles across the

Na tail that did not deviate significantly. At the distances considered, the effect does

not depend critically on the position of night-side ion impacts.

In the solid line of Figure 5.6 panel D, an approximate agreement to the Potter

& Killen (2008) data is found for a total desorption rate of 4.3 × 1025 Na atoms

s−1, half of which originates before 10 am local time. The total deposition of Na+

to the nightside has been estimated on the order of 1023 per second (Delcourt et al.,

2003). This ion recycling rate alone is insufficient to provide such high Na desorption

at morning. Rather, north-south asymmetries in a morning source enhancement are

attributed to anisotropies in adsorption of exospheric Na, and to nightside ion impacts.

Nightside impactors may aid the subsequent diffusion of Na more than solar wind

protons, given their impact energies (Delcourt et al., 2003; Sarantos et al., 2010). If

source energies based on desorption from a lunar sample are used (see Figure 4.6), the

requisite source is 15% greater than Na desorption from quartz, as the high-energy

tail to this distribution allows less escape.

Figure 5.8 gives simulation results that show how this neutral sodium tail would

appear under perfect seeing from Earth. White lines identify locations where cross-

sectional slices were taken to produce the solid line in Figure 5.6 Panel D, corre-

sponding to slit positions of the spectrograph used by Potter & Killen (2008). As the

migration from the southern source enhancement takes place very close to the surface,

the asymmetry is seen quite close to the planet. The northern enhancement becomes

more difficult to detect with distance, especially beyond ∼10 RM . The panel at right

displays the associated column density to show where sources are prominent above

the surface. At mid and high latitudes, ion precipitation and high surface concentra-

tions enhance the Na exosphere. The exosphere is also enhanced at morning where
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Figure 5.8 Simulated Na tail for meteoritic and photo-desorbed sources. The 4 white
lines trace slices taken for the profiles of Figure 5.6 Panel D.
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incident sunlight first becomes significant in intensity, however, this is also where the

observer’s path length though the atmosphere is shortest, at the center of the planet’s

disk. The confluence of these effects results in a low-latitude column density that is

relatively flat across the visible dayside, except near the hot sub-solar point where the

PSD source is depleted.

Figure 5.9 offers a summary of the scenarios used in simulating these asymmetries.

Orange surface regions delineate regolith impacted by ions. Escaping Na trajectories

indicate migration effects using modeled paths for vertically desorbed Na at 2 km s−1

during the Potter & Killen (2008) measurement on 12 June 2006. Dotted lines indicate

trajectories from a southern source (green) and a northern source (orange). Desorption

mainly re-distributes Na atoms that eventually accommodate to cooler surfaces; the

light blue trajectory shows 1 km s−1 bound atoms. Ions attached to field lines shown

close to the night-side can impact the surface during frequent dipolarization events in

the magnetotail, and night-side ions precipitate to mid-latitudes via plasma convection

during intense magnetic reconnection (Sundberg et al., 2012).

The escaping fraction of desorbed sodium depends on the depletion of available

desorption sites throughout the morning, though the depletion timescale had only

a small effect on the shape of the simulated tail profile. A two order of magnitude

increase in the topmost surface concentration due to adsorption with a one week e-fold

depletion is used here based on the Baumgardner et al. (2008) observations. Mura

et al. (2009) found an even higher dawn enhancement in PSD, but with decay of more

than an order of magnitude over this time. Column content estimated by Sprague

et al. (1997) showed a much longer e-fold falloff over more than 6 hours local time,

and similar decay rates are seen in the Leblanc et al. (2013) data. The one Earth

week e-fold decay rate in Na surface concentration assumed here is nearly ten times

longer than that predicted by Mura et al. (2009) or Sprague (1992), but shorter than
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Figure 5.9 A diagram showing characteristic regions of ion precipitation and sodium
trajectories at Mercury. Precipitation is separated into cusp components on the day-
side, and “auroral” components on the nightside. Orange shows surface regions subject
to ion bombardment, where fresh sodium diffuses to the surface and desorbs into the
exosphere upon heating and exposure to sunlight. Trajectories for sodium vertically
ejected at 1 km s−1 from the cusps are shown in blue. Escape trajectories are shown
for particles desorbed near dawn.
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the Sprague et al. (1997) and Leblanc et al. (2013) observations. Simulations using

a one Earth day time constant better approximate the removal of ion implanted Na

proposed by Killen & Morgan (1993), and result in 50% greater escape. The PSD rate

determined in these simulations may be lower depending on Na depletion rates, but

still exceeds those previously derived (Schmidt et al., 2012) as a consequence of lower

ejection energies.

These results represent the time-averaged conditions in the Mercury system, while

solar wind and interplanetary magnetic field (IMF) conditions should still affect the

exosphere. Sarantos et al. (2001, 2007) have modeled the solar wind ion precipitation

locations on Mercury’s surface for different IMF configurations. Like the Earth’s

magnetosphere, solar wind plasma has access to the system primarily during south-

ward IMF conditions (Bz < 0). When the IMF is south-ward, Sarantos et al. (2001)

showed that the radial (Bx) IMF component can induce a north-south asymmetry

in particle precipitation. For a Bx > 0 (sun-ward pointing), solar wind ions have

a momentum component which is parallel to Mercury’s open field in the southern

hemisphere, and hence more precipitation in the southern hemisphere is expected,

further offsetting the north-south asymmetry. The opposite effect occurs for Bx < 0,

acting to cancel out the inherent asymmetry in precipitation imposed by Mercury’s

offset dipole. The sign of the Bx component shares equal likelihood between these

cases (Sarantos et al., 2007), but an IMF driven asymmetry occurs primarily during

south-ward IMF conditions when magnetic reconnection is strongest.

MESSENGER has recorded the IMF conditions while the spacecraft is outside of

Mercury’s bow shock and magnetosphere, at least 1 hour prior to first flyby (M1), and

1.5 hours prior to the second flyby (M2). For several hours prior to the M1, Bz was

variable and Bx < 0. As such, slightly more ions may have precipitated toward the

northern hemisphere. For several hours prior the initial crossing of the bow shock dur-
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ing the M2 flyby, Bz was oriented north-ward, resulting in a magnetosphere that was

more closed to solar wind plasma. This may explain why a north-enhanced asymmetry

was more pronounced in the Na tail during M1 than during M2 (McClintock et al.,

2008; Vervack et al., 2010). Relatively little precipitation would have occurred prior

to M2 measurements under north-ward IMF conditions. More particles were able to

reach the surface during M1, though the Bx induced asymmetry may have somewhat

mitigated the 1:4 north-south asymmetry inherent to the offset dipole (Winslow et al.,

2012).

Many datasets confirm sodium sources concentrated at dawn (e.g., Sprague et al.,

1997; Schleicher et al., 2004) with brightness peaks in the southern hemisphere (e.g.,

Mangano et al., 2009) as indicated by these results. On average, brighter emission

in the southern hemisphere relative to the north has been reported when the dawn

terminator was in view, an effect not seen at dusk (Potter et al., 2006). Measurements

at 96◦ TAA by Leblanc et al. (2013) show D2 line brightness narrowly confined to

regions near dawn, with mid-latitude enhancements. During the flybys, MESSEN-

GER fantail observations showed excess in the northern and dusk portions of the tail

(Vervack et al., 2010), and now in orbit, the FIPS instrument reveals equatorial Na+

concentrated near dawn just above the surface and tail-ward of dusk at 2-3 RM (Raines

et al., 2013 in press). Both are consistent with trajectories of escaping particles that

have drifted to the opposite hemisphere before traveling down-tail, given enhanced

sources near dawn and in the southern hemisphere.
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Chapter 6

Summary

6.1 Conclusions

“What is/are the source/sources of Mercury’s atmosphere?” The exosphere is sus-

tained primarily by photon-stimulated desorption with an added contribution from

micro-meteorite impacts. This is indicated by my model comparisons with both the

seasonal variability in sodium escape in Section 5.2.3, and the shape of the cross-tail

profile in Section 5.3.1.

“How much of Mercury’s atmosphere is escaping?” As much as 20% of the sodium

atoms displaced from the surface into the atmosphere will escape the planet. This is

based on the my modeling of the escape of Na ejected from the surface by photon-

stimulated desorption and micro-meteorite vaporization of Na in Table 5.2.

“How does this escape vary with time?” Escape varies with solar radiation pressure.

This based on analysis of the coronagraph data at different orbital phases in Section

3.5.4. However, second order short-term variations due to meteor impacts and space

weather cannot be ruled out. Further data analysis is needed to determine if escape

is also a function of variable source rates at the surface.
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“Do sources keep up with losses?” Seasonally, no. There are portions of Mercury’s

orbit in which the bound exosphere becomes depleted due to losses by escape. This

is evident in the Leblanc & Johnson (2010) data, in which seasonal depletions in the

dayside content match the seasons where I observe the maximum atmospheric escape

(see, for instance, Figure 2.13). The influx of meteoritic Na balances the average loss,

however, and on geological time scales the sodium abundance should be approximately

constant.

“Is the atmosphere coupled to the magnetosphere?” Yes. The effects of ions precipi-

tating to the surface are observed in both the bound and escaping atmosphere. The

asymmetry in north-south precipitation (due to the offset magnetic dipole) imprints

a signature on the spatial distribution of exospheric sodium. This is based on Sec-

tion 5.3.1, in which my modeled effects of ion precipitation are compared to the near

simultaneous observations of Baumgardner et al. (2008) and Potter & Killen (2008)

showing exospheric north-south asymmetries.

6.1.1 Summary of Observational Results: Schmidt et al. (2010)

The brightness of scattered sunlight suggests a strong correlation between the

characteristics of the tail and the effects of radiation acceleration. My observations

imply an increased escape rate during times of high radiation acceleration. Escape

rates are determined to increase from 4.6 to 12.6 × 1023 atoms s−1, as radiation

acceleration increases from ∼115 to ∼184 cm s−2, half of the 3.7 m s−1 gravitational

acceleration. This is considered to be a steady state baseline escape which is a function

of Mercury’s orbital position, rather than a transient ion sputtering effect, as no

disturbances in solar environment were found to occur at these observation dates.

Rates of exospheric atoms lost to the tail are consistent with those found by Potter
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et al. (2002) and Potter & Killen (2008) at a similar orbital phase. However, during an

orbital phase of maximum radiation pressure I find that sodium escape from Mercury

exceeds 1024 atoms s−1, nearly twice the highest previously published rate (McClintock

et al., 2008). At this time, escape becomes a substantial fraction of the total planetary

production. This is repeatedly observed in long-term surveys; a ∼40% decrease in the

disk averaged emission is found at this true anomaly angle (Leblanc & Johnson, 2010).

My most recent observations in Fig. 2.18 demonstrate significant escape at orbital

phases where prior studies predict the tail should disappear beyond the detection

limit (Potter & Killen, 2008).

An escaping tail of neutral sodium atoms persists over a significant portion of the

planet’s orbit with an extent of several hundred Mercury radii. Using the wide-field

imaging method, a single image can capture a ∼10 h time history in which the tail is

bright enough to observe possible changes in escape rates. No observations, to date,

give evidence of emission changes on an hourly timescale that can be attributed with

confidence to variations in sodium production rates associated with solar activity or

meteor flux. However, continued observations and modeling will show if characteristics

of the escaping atmosphere indeed depend on orbital conditions alone. The expansion

rate of the tail’s width remained nearly constant over five measurements, implying

that the energy of the escaping population does not vary with time.

6.1.2 Model Results based on the Wide-Field Data: Schmidt et al. (2012)

Given our current understanding of precipitating ions and sputtered energies, I

have eliminated ion sputtering as an effective means of atmospheric escape on Mer-

cury. Even with a generous upper limit of 1.3 × 1023 atoms s−1, the total flux of

sputtered sodium, previously considered the primary supplier of the tail (e.g., Potter

& Killen, 2008), is shown to constitute only a small fraction of the escaping popu-

lation. Total sputtered source rates reported for the first two MESSENGER flybys
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were much smaller still than my upper limit: 3.5 × 1021 atoms s−1 and 2.3 × 1021

atoms s−1, respectively, (Burger et al., 2010). Although the fraction of this population

escaping the planet is substantial, my simulations conclude that the sputtered source

rate is likely to be more than an order of magnitude smaller than the ∼1024 atoms s−1

needed to sustain the recorded brightness in the distant tail.

I have shown that micro-meteorite impact vaporization, while more significant

than sputtering, is also not the dominant escape mechanism. Currently, our knowledge

of the impactor flux at Mercury is quite poorly constrained. Burger et al. (2010)

estimated an impact vaporization source rate of 3.5 × 105 atoms cm2 s−1, about

half that assumed by Leblanc & Johnson (2003). The recent study by Borin et al.

(2010) suggests it may be substantially higher still due to migration of dust particles

by the Poynting-Robertson effect. My derived Na production rates that match the

observed tail brightness are 3.6 × 106 and 1.8 × 106 atoms cm2 s−1 for a 3000 and

5000 K vaporized population, respectively, if this were the only source of escaping

sodium. This is approximately the minimum meteoritic source rate determined by

Borin et al. (2010) accounting for asteroid dust migration into the inner solar system.

Even at 5000 K, however, the width of the tail is significantly narrower than our

observations. Judging from lunar effects, analysis of the LCROSS impact suggests a

temperature of only 1000 K in the Na plume (Killen et al., 2010a). Although impact

velocities at Mercury are expected to be 7 to 9 times faster than LCROSS, a plume

temperature <3000 K may be more realistic (Borin et al., 2009). It has been suggested

that a small fraction of Na produced during meteor impacts may be in the form of

oxides and hydroxides (Berezhnoy & Klumov, 2008). The photolysis lifetimes of these

molecules are short on Mercury compared to the ballistic time of flight to collide with

the surface (Self & Plane, 2002). Neutral Na resulting from this photo-decomposition

retains an energy of the order of the molecular bond strength, resulting in a trace
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but energetic (1-2 eV) Na population. Although the production of these high-energy

atoms is poorly constrained, it is possible this process may widen the cross-tail profiles

of impact-vaporized sources significantly, allowing a better match to the Schmidt et al.

(2010) data.

Sources with a high-energy tail feature in the velocity distribution best fit the

observed sodium tail width, in particular, a fast PSD source with a 10 eV maximum

energy cutoff. Mura et al. (2009) determined fast PSD to be the primary source

in simulations of the exosphere during the 2003 transit of Mercury across the solar

disc. A large set of observations by Potter et al. (2007) showed a 30% reduction

in dayside Na column density between minimum and maximum radiation pressures.

This reduction is found to be 33% and 38% for slow and fast PSD, respectively, and a

globally averaged supply rate of 4.8 × 107 and 9.7 × 106 atoms cm−2 s−1 is required to

match my wide-field observations if PSD alone was the source of all escaping sodium at

Mercury. However, the observed polar brightness suggests twice the supply of sodium

in cusp regions compared to other day-side areas (Baumgardner et al., 2008), and PSD

in these regions is found to yield much higher escape rates than a photon-limited case,

which peaks at the subsolar point. As shown for sputtering, localized polar sources of

energetic sodium would be evident in bright flanks in the northern- and southern-most

regions of the tail in a smaller field of view. While observations suggest this may be

the case, such features are difficult to distinguish from the effects of shadowing (Potter

& Killen, 2008).

Atoms liberated from Mercury’s surface by both PSD and micro-meteoroid im-

pact vaporization contribute significantly to the escape of atmospheric sodium from

Mercury. Maxwellian velocity distributions at 1500 and 3000 K, corresponding to PSD

and to impact vaporization, respectively, best matched the escape flux as a function

of orbital phase found in my wide-field data set. However, both of these thermal dis-
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tributions lacked the high-energy atoms needed to match the observed width of the

comet-like neutral tail. The energy distribution of atoms released into the exosphere

must have two key features: (1) a low peak energy (∼1000 K), so that the escape rate

varies substantially with orbital phase, and (2) a high-energy tail sufficient to match

the observed width far from the planet. Measured energy distributions of sodium

released by desorption off a lunar sample induced by electrons (representative of UV

photons) best match these criteria (Yakshinskiy & Madey, 2004). High-energy sources

require a large degree of driven variability to match the escape observed in the Schmidt

et al. (2010) data set. Of the six characteristic sources modeled, a 1500 K PSD source

and a 3000 K impact vaporization source showed the least deviation from steady state

in order to match the brightness at multiple orbital phases. A PSD source with a

high-energy tail best matched the observed width of the escaping sodium population

at Mercury.

Sufficiently large meteoroids (>30 cm in radius) impacting the surface could be

identified using ground-based wide-field imaging techniques by the resulting plume

of sodium in the vaporized regolith several hours after impact, depending on the

impact location. Variable source processes on longer timescales, rather than a single

instantaneous impact, such as ion precipitation and meteors showers from Sun-grazing

comets, resulted in an overall brightening of the sodium tail as a whole instead of

distinct hot spots.

The model predicts that an isolated sodium feature should appear at more than

100 planetary radii from Mercury during the “in” leg of the orbit. As seen in Figure

5.3, the terrestrial background noise at the time of my observation is considerable.

Although the signal to noise level of 1.36 is insufficient to accurately quantify this

feature’s brightness, a local maximum exists in the coronagraph data at the ∼175 RM
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anti-sunward distance forecast by the model. Follow up observations will certainly be

able to confirm or refute my prediction.

6.1.3 Summary of North-South Asymmetry Study: Schmidt (2013)

Using 3-D numerical modeling, I have demonstrated that ion precipitation, en-

hanced in the south, can result in the observed Na emission profiles across the tail that

are brighter in the north (Baumgardner et al., 2008; McClintock et al., 2008; Potter

& Killen, 2008). However, sources located at high latitude cusp footprints on the

dayside are unable to match the observed width of the brightness profiles across the

tail. Instead, my simulations provide evidence for lower latitude sources, which may

result from magnetospheric ion precipitation. Such source regions would be enhanced

on the dawn-side given the accumulation of sodium and ion impact sites during the

long Mercury night, especially at orbital longitudes following maximum precipitation

at perihelion. Photo-desorption, rather than ion sputtering, is determined to be the

responsible mechanism for this population’s release and escape from the planet’s sur-

face. I find that a thermal accommodation, α ∼0.2, best reproduces the simultaneous

measurements of Potter & Killen (2008) and Baumgardner et al. (2008), consistent

with the range of 0.1 to 0.3 determined by Mouawad et al. (2011). If α is as large as

0.62, as Hunten et al. (1988) proposed, sources with a Maxwellian energy distribution

are not consistent with the observed width of the Na tail in Schmidt et al. (2010).

The results of simulated asymmetries in the sodium tail can be summarized in

three key points. First, sodium escaping Mercury’s gravity via high radiation pressure

drifts to the opposite hemisphere of the tail. This is especially true for low energy

sources such as PSD, where migration occurs very close to the disk. Northern en-

hancements in the portion of the tail near dusk seen in the MESSENGER spacecraft

roll during M2 (Vervack et al., 2010) are therefore consistent with enhanced sources

at dawn in the southern hemisphere. Secondly, low energy sources provide a better
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match to both the width and brightness of each tail lobe than simulations using a

sputtering source. PSD rates enhanced at latitudes of ion bombardment yield similar

structure in comparison with both the Potter & Killen (2008) and Baumgardner et al.

(2008) data, observations made just a few days apart. Third, sources at the mag-

netospheric cusps supply relatively little Na directly to the tail. Both sputtered and

desorbed sources at the cusp footprints yield a Na tail of width far in excess of what

is measured (Potter & Killen, 2008). Furthermore, the requisite ejection rates from

these regions to reproduce the peak D line brightness would well exceed reasonable

estimates. Alternatively, magnetospheric ion precipitation to Mercury’s night-side is

shown to be a viable mechanism for producing the exosphere asymmetries observed

and best matches the wings of the tail profiles.

6.2 Discussion

As the strong effects of radiation pressure at vary uniquely for each species in Mer-

cury’s atmosphere, it should be noted that sodium is not an ideal tracer for the spatial

distribution of other atmospheric constituents. Potassium is the species present with

the most similar characteristics in terms of photoionization lifetime, ejection mecha-

nisms and radiation pressure (Smyth & Marconi, 1995; Yakshinskiy & Madey, 2005).

Though potassium tail structures analogous to Na should exist in principle, their de-

tection is hindered by the low abundances — observed Na to K ratios span a range

from 36 to 260 (Killen et al., 2010b; Leblanc & Doressoundiram, 2011). Additional

atmospheric constituents may share the same source mechanisms as Na and K. The

best measurements of such species come from MESSENGER, and only the refractory

elements Ca and Mg are well characterized currently. Ca and Mg temperatures are

much hotter (20,000 - 50,000 K) suggesting the bulk populations are the products of

molecular dissociation (Killen et al., 2010b; Burger et al., 2012). At such high ener-



142

gies, substantial escape of these species is observed in the tail region, despite the lesser

effects of radiation pressure compared to Na (Vervack et al., 2010).

Near true anomaly angles of∼65◦, I show that roughly 20% of Na atoms displaced

from the surface into the atmosphere will escape. Long term (daytime) observing

campaigns utilizing solar telescopes have repeatedly observed a depletion by nearly

40% in the disk-averaged exosphere at this orbital phase (Leblanc & Johnson, 2010).

Reconciling these figures suggests that the average residence time for a Na atom in the

exosphere is, perhaps not surprisingly, a function of radiation pressure. At maximum

radiation pressure, residence times 75% of the average would account for gains in

the tail balancing losses in the bound exosphere. While the escaping fraction I have

determined is higher than previous estimates (Potter & Killen, 2008), it is much less

than the ∼50% hypothesized to escape the lunar gravity (Wilson et al., 2003).

The five measurements of Mercury’s sodium tail I reported in Schmidt et al.

(2010) span distances 0.023 to 0.042 AU from the ecliptic plane. Of these, the brightest

observation and highest column density occurred at the farthest distance from the

ecliptic plane. Furthermore, the recorded brightness as a function of distance from

the ecliptic plane is anti-correlated with the disc-averaged trend used in the study

of Kameda et al. (2009), in which higher source rates near the symmetry plane were

proposed because of interplanetary dust. I have shown that radiation acceleration

can strip a significant portion of Mercury’s sodium exosphere from the planet, and

pointed out that Mercury’s orbit is such that radiation pressure is strongest near the

greatest distance from the ecliptic plane. The effect reported in the study by Kameda

et al. (2009) is therefore interpreted as losses in the gravitationally bound sodium via

radiation pressure, observed as gains in the tail.

The results of my Schmidt (2013) asymmetry study connect spatial patterns

observed in the escaping Na tail with those of the gravitationally bound exosphere, al-
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though not without raising further questions. Given the desorption energies in Figure

4.6, optimum parameters used in this model fit both the dayside brightness (Baum-

gardner et al., 2008) and the tail brightness (Potter & Killen, 2008) simultaneously

within a factor of two. That is, accurately modeling the tail gives a bound exosphere

twice in excess of the Baumgardner et al. (2008) dayside emission, or matching the

dayside emission yields only half the escape measured by Potter & Killen (2008).

Resolution and residual seeing effects may account for some of this discrepancy, and

disk-averaged emission lies within the range measured by Leblanc & Johnson (2010).

Surface reflectance has not been included in this model. The associated radiation

pressure, while only a few percent of the solar value, may allow significantly more

atoms in the high energy tail to escape. Another possibility is that hermean PSD

energies are higher than the laboratory results in Figure 4.6. For the slow and fast

energies investigated by Mouawad et al. (2011), 2.3 and 89 times more Na atoms es-

cape, respectively, when compared with the dotted line in Figure 4.6 (particular to this

orbital phase, neglecting surface bouncing or ion enhancements). Thus, increasing the

photo-desorption energies would also better reproduce brightness in the bound and

escaping exosphere simultaneously.

Dawn-dusk asymmetries are likely to be seasonal, correlated with the approxi-

mate tidal locking effect near perihelion and the rate of advance of the morning termi-

nator. While space weather also imposes seasonal modulation, precipitation driving

north-south asymmetries is irregular. Such variability may explain why, though the

orbital phase was similar, the Na tail during the second MESSENGER flyby appeared

more symmetric than the first (McClintock et al., 2008; Vervack et al., 2010). I demon-

strate that time averaged space weather conditions given by (Winslow et al., 2012)

should, however, produce a substantial asymmetry in the tail, as is most commonly

observed (Baumgardner et al., 2008; McClintock et al., 2008; Potter & Killen, 2008).
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The surface concentration of Na can be thought of as a reservoir that feeds the

exosphere. Atoms re-adsorbed from the exosphere, meteoric Na, and precipitating

Na+ through the magnetosphere all add to the surface concentration, while the escap-

ing Na tail and Na+ escaping the magnetosphere deplete the surface reservoir. It is

important to note that sources and sinks of the Na surface reservoir are not balanced

self-consistently in my model. That is, I assume the spatial distribution of Na in the

surface rather than simulating it in numerical steady state equilibrium. The archi-

tecture of my model permits Na adsorbed by the exosphere to influence the spatial

distributions of Na available to each exospheric source process. However, meteoritic

and magnetospheric contributions to the reservoir must also be considered for a con-

served self-consistent balance between sources and sinks. Leblanc & Johnson (2010)

have presented a model in which the balance of Na between the surface reservoir and

the exosphere is conserved. This approach is more computationally expensive than

the model I present here, as it tracks nearly 1000 surface particles for every exospheric

particle. Their work suggests Mercury’s surface reservoir contains ∼1031 Na atoms

and between 1.6 and 4.5 × 1028 Na atoms in the exosphere.

The physical parameters governing a detailed model of the balance between sur-

face reservoir and the exosphere remain uncertain. In particular, the rate at which Na

is supplied to the topmost surface of regolith grains is poorly known. The Arrhenius

diffusion rates, (rate constant k = Ae−Ea/(kBT ), where A is a constant, kB is Boltz-

mann’s constant, T is temperature, and Ea is the activation energy) of Na through the

grain are highly dependent on how vitrified the surface is. Diffusion coefficients for Na

through glassy grains are several orders of magnitude higher than for mineral grains

(Čapek & Borovička, 2009). The temperature dependence of diffusion from depth

must therefore consider the ensemble of grains types and sizes. Plasma precipitation

creates defects in the grain, which increase the diffusive supply to exospheric source



145

processes, an effect that is dependent on the plasma energy (Sarantos et al., 2010).

Furthermore, diffusion will also depend on gradients in the surface potential (Madey

et al., 1998). Kilovolt negative potentials have been measured at the Moon and gra-

dients are expected to be strongest at boundaries between shadowed and illuminated

surfaces (Halekas et al., 2008). Each exospheric process depletes the surface reservoir

at a different depth; desorption affects the topmost monolayers (Madey et al., 1998),

typical ion impacts penetrate a few hundred angstroms (Sprague, 1992), and mete-

orites excavate at depth. Considering all of these effects and the dynamic conditions

in the magnetosphere, a complete treatment of the surface reservoir of Na is therefore

complex.

6.3 Future Work

Wide-field coronagraph and image-slicer measurements that I present are gener-

ally made within 5 to 10◦ of the horizon. Given the extreme effects of atmospheric

extinction in these data, much time and care will be required for calibration to the

desired degree of confidence. As such, only the first two years of wide-field data in

this study have been published to date (Schmidt et al., 2010). For these few nights,

extinction profiles were compiled from many stars in the field to gain confidence in the

extinction with altitude, a laborious procedure when applied to the more than fifty

nights of data shown in Table 2.1. In contrast, Figures 2.17 and 2.18 result from the

calibration method outlined in Chapter 2 in which only one or two standard stars were

used to calculate the atmospheric extinction at the time of exposure. In the time since

Schmidt et al. (2010), a data reduction pipeline for the image slicing spectrograph has

been developed. Utilizing the occasional short exposure off the coronagraph occulting

mask, cross-calibration now can be performed by utilizing simultaneous measurements

with both instruments. Data analysis using instrumental cross-calibration and/or ad-
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ditional stellar extinction profiles is considered necessary to better constrain potential

variability in atmospheric escape independent from orbital effects.

A model of the planet’s surface reflectance can be used to calibrate the image-

slicing spectrograph data independently from the method using standard stars which

I described in Sections 2.4.3 and 2.4.4. Several other studies use a Hapke model

of surface reflection (Hapke, 1986) with the parameters of Mallama et al. (2002) as

a photometric standard to calibrate observations of the Na exosphere (e.g., Potter

et al., 2006; Leblanc & Johnson, 2010; Mouawad et al., 2011). Forward modeling

the reflectance of Mercury’s surface can also give an independent estimate of the

atmospheric seeing (e.g., Potter et al., 1999), a useful comparison with my current

estimates based on stellar PSF fitting. To increase confidence in the calibration of

the image slicing spectrograph data, and by association the coronagraph data, this

alternative method should be explored. Following a more rigorous analysis of my

nightly extinction conditions as just described, data comparison with simultaneous

measurements from other ground-based observatories is planned (cf., Table 2.1).

A model of surface reflectance is also applicable to simulations of the exosphere.

Surface reflectance of Mercury may significantly aid in the resonant scattering of the

sodium D-lines at Mercury. The contribution of surface reflection to both D-line

brightness in the day-side exosphere and escape via radiation acceleration may be

non-negligible. Including the effects of surface reflection in the model is computation-

ally intensive, even if the surface is idealized as a smooth sphere which singly scatters

sunlight. The vector addition of the Sun-Mercury and the Mercury-particle Doppler

shift is needed to compute the spectral flux in the particle’s frame. To then compute

the effect on particle trajectories, the phase angle of the planet and the Doppler cor-

rected spectral flux must be calculated at each integration time step for each particle.

The Hapke function (Hapke, 1986) must be integrated over the visible region of the
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planet in this procedure. A complete treatment of exospheric emission that includes

reflectance of the planet’s disk should also consider the scattering phase function of

the D2 line.

Another prospective project involves serendipitous space-based observations of

Mercury’s exosphere that were unforeseen. Heliospheric Imagers HI-1 aboard both

the STEREO-A (Ahead) and -B (Behind) spacecraft occasionally record emissions

extending anti-sunward in a tail from Mercury. These wide-field cameras use “white

light” broadband filters designed to image transient in the solar wind via Thomson

scattering. Thomson scattering of sunlight from nearby solar coronal electrons is seen

simultaneously throughout the HI-1 field with short-term brightness variations near

the planet. However, the overall instrument transmission (filter × detector quantum

efficiency) of is only between 1 and 2 percent at sodium D line wavelengths. If calibra-

tion is carried out assuming the emission is completely due to sodium D-line emission,

HI-1A measurements on 28 January 2009 show a sustained brightness of nearly 30 kilo-

Rayleighs over more than 24 hours at a distance of 12 arcminutes from the planet. At

this time, the line of sight from STEREO-A and the Sun-Mercury directions differs

by only 7◦, with the tail pointed toward the Ahead spacecraft. Correcting for path

length and projection, this corresponds to a cross-tail brightness of 7 kiloRayleighs

at a physical distance of nearly 430 planetary radii. Based on my coronagraph ob-

servations of the tail, a sodium D line brightness between 100 and 200 Rayleighs is

expected for this orbital phase. It is unlikely that the HI-1A recorded emissions in the

kR range would be due to sodium at such distances.

Two possibilities exist to explain this large discrepancy in brightness between

STEREO and ground-based imaging. First, an additional source of emission besides

that of the sodium D-lines may be present. It is unlikely that bright line emissions

from ion, atomic or molecular transitions would have gone undetected by ground-
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based Echelle spectrographs (e.g., Bida et al., 2000), hence a broad-band emission

source is more probable. Thomson scattering off electrons somehow related to the

Mercury system is very inefficient for forward scattering geometries (Howard & Tappin,

2009), which thus far seem inherent to the feature’s appearance. The potential for

scattering off dust particles remains to be determined. The second possibility is simply

uncertainty in the STEREO HI-1 calibration for sodium D emission. The feature is

best imaged when the tail is aligned along the line of sight at the edge of the HI field

of view. Pre-launch performance calibrations of these instruments are only available

for on-axis imaging. Deviations in the calibrated spectral throughput will be highest

for objects imaged at the extremes of the field of view, as is the case here. Another

source of calibration uncertainty is the stability of the optics coatings with yttrium it

is possible that the filter responses have changed since pre-flight testing. Despite these

considerations, the STEREO space-based observing capability provides new insights

into long and short-term temporal variability in the hermean system and its potential

sources.

At the time of writing, the only published data of hermean sodium from MES-

SENGER were taken during the flybys. That is, no published data were recorded

during the spacecraft’s orbit. After several Mercury years of in situ observations, this

dataset is rich with clues about the seasonal distribution of sodium in the exosphere.

Preliminary studies with MESSENGER have already yielded many important devel-

opments in our understanding of Mercury’s environment. After several hermean years

of accumulated data, the MASCS instrument is beginning to reveal seasonal patterns

in the exosphere in which both dawn and dusk enhancements are correlated with or-

bital phase (Cassidy, personal communication 2013). This new information will add

important constraints for our understanding of the exosphere, and it is reasonable to

expect subsequent revisions to my model in light of new developments.
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Major element abundances from the MESSENGER GRS instruments have re-

cently placed firm constraints on the surface mineralogy (e.g., Evans et al., 2012). In

light of this information, it is now possible for laboratory experiments to pin down

physical quantities that are often treated as free parameters in current exosphere mod-

els. Laboratory studies of ion-enhanced diffusion and the associated timescales would

much improve our understanding of localized exospheric enhancements and the in-

ferred effects of space weather on the exosphere. In particular, diffusion coefficients

for the temperature dependent supply rates of fresh sodium from depth can now be

determined. As I’ve shown in fig 4.5, there is currently little consensus in the com-

munity about the energies associated with exospheric source mechanisms, although

the yields and energy distributions can be determined empirically. Such experiments

are vital to the progress of the field, and, in conjunction with an understanding of

the seasonal patterns as revealed by MESSENGER, should provide closure to the

outstanding questions regarding Mercury’s tenuous atmosphere.
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